The demands for carbon fiber reinforced composites (CFRCs) are growing in the aviation industry for fuel consumption savings, despite the increasing risk of electromagnetic interference (EMI). In this work, polyacrylonitrile (PAN) sheets were prepared by electrospinning. Carbon nanofiber (CNF) sheets were obtained by the carbonization of PAN sheets. The laminate structures of the CF reinforced bismaleimide (BMI)-based composites were specially designed by introducing two thin CNF sheets in the upper and bottom plies, according to EMI shielding theory. The results showed that the introduction of CNF sheets led to a substantial increase in the EMI shielding effectiveness (SE) by 35.0% compared with CFRCs free of CNF sheets. The dominant EMI shielding mechanism was reflection. Noticeably, the introduction of CNF sheets did not impact the interlaminar shear strength (ILSS) of CFRCs, indicating that the strategy provided in this work was feasible for fabricating CFRCs with a high EMI shielding performance without sacrificing their mechanical properties. Therefore, the satisfactory EMI shielding and ILSS properties, coupled with a high service temperature, made BMI-based composites a promising candidate in some specific fields, such as high-speed aircrafts and missiles.
This work concentrated on the interlaminar mechanical properties and toughening mechanism of carbon fiber-reinforced bismaleimide resin (CF/BMI) composites modified by polyacrylonitrile (PAN) nanofiber films. The PAN nanofiber films were prepared by electrospinning. End-notched flexure (ENF) and short-beam strength tests were conducted to assess the mode II fracture toughness (GIIc) and interlaminar shear strength (ILSS). The results showed that the GIIc and ILSS of PAN-modified specimens are 1900.4 J/m2 and 93.1 MPa, which was 21.4% and 5.4% higher than that of the virgin specimens (1565.5 J/m2 and 88.3 MPa), respectively. The scanning electron microscopy (SEM) images of the fracture surface revealed that the PAN nanofiber films toughen the composite on two scales. On the mesoscopic scale, the composite laminates modified by PAN formed a resin-rich layer with high strength and toughness, which made the crack propagate across the layers. At the microscopic scale, the crack propagation between two-dimensional nanofiber films led to constant pull-out and breakage of the nanofibers. As a result, the interlaminar fracture toughness of the composite laminates improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.