RNA editing is a post-transcriptional maturation process affecting organelle transcripts in land plants. However, the molecular functions and physiological roles of RNA editing are still poorly understood. Using high-throughput sequencing, we identified 692 RNA editing sites in the Gossypium hirsutum mitochondrial genome. A total of 422 editing sites were found in the coding regions and all the edits are cytidine (C) to uridine (U) conversions. Comparative analysis showed that two editing sites in Ghatp1, C1292 and C1415, had a prominent difference in editing efficiency between fiber and ovule. Biochemical and genetic analyses revealed that the two vital editing sites were important for the interaction between the α and β subunits of ATP synthase, which resulted in ATP accumulation and promoted cell growth in yeast. Ectopic expression of C1292, C1415, or doubly edited Ghatp1 in Arabidopsis caused a significant increase in the number of trichomes in leaves and root length. Our results indicate that editing at C1292 and C1415 sites in Ghatp1 is crucial for ATP synthase to produce sufficient ATP for cotton fiber cell elongation. This work extends our understanding of RNA editing in atp1 and ATP synthesis, and provides insights into the function of mitochondrial edited Atp1 protein in higher plants.
Global profile of gene expression at single-cell resolution remains to be determined for primates. Using a recently developed technology (“Stereo-seq”), we have obtained a comprehensive single-cell spatial transcriptome map at the whole-brain level for cynomolgus monkeys, with ∼600 genes per cell for 10 μm-thick coronal sections (up to 15 cm2 in size). Large-scale single-nucleus RNA-seq analysis for ∼1 million cells helped to identify cell types corresponding to Stereo-seq gene expression profiles, providing a 3-D cell type atlas of the monkey brain. Quantitative analysis of Stereo-seq data revealed molecular fingerprints that mark distinct neocortical layers and subregions, as well as domains within subcortical structures including hippocampus, thalamus, striatum, cerebellum, hypothalamus and claustrum. Striking whole-brain topography and coordinated patterns were found in the expression of genes encoding receptors and transporters for neurotransmitters and neuromodulators. These results pave the way for cellular and molecular understanding of organizing principles of the primate brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.