Attribute-based Encryption (ABE) is regarded as a promising cryptographic conducting tool to guarantee data owners' direct control over their data in public cloud storage. The earlier ABE schemes involve only one authority to maintain the whole attribute set, which can bring a single-point bottleneck on both security and performance. Subsequently, some multi-authority schemes are proposed, in which multiple authorities separately maintain disjoint attribute subsets. However, the single-point bottleneck problem remains unsolved. In this paper, from another perspective, we conduct a threshold multi-authority CP-ABE access control scheme for public cloud storage, named TMACS, in which multiple authorities jointly manage a uniform attribute set. In TMACS, taking advantage of (t, n) threshold secret sharing, the master key can be shared among multiple authorities, and a legal user can generate his/her secret key by interacting with any t authorities. Security and performance analysis results show that TMACS is not only verifiable secure when less than t authorities are compromised, but also robust when no less than t authorities are alive in the system. Furthermore, by efficiently combining the traditional multi-authority scheme with TMACS, we construct a hybrid one, which satisfies the scenario of attributes coming from different authorities as well as achieving security and system-level robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.