No abstract
Purpose – The purpose of this paper is to summarize the progress in grey system research during 2000-2015, so as to present some important new concepts, models, methods and a new framework of grey system theory. Design/methodology/approach – The new thinking, new models and new methods of grey system theory and their applications are presented in this paper. It includes algorithm rules of grey numbers based on the “kernel” and the degree of greyness of grey numbers, the concept of general grey numbers, the synthesis axiom of degree of greyness of grey numbers and their operations; the general form of buffer operators of grey sequence operators; the four basic models of grey model GM(1,1), such as even GM, original difference GM, even difference GM, discrete GM and the suitable sequence type of each basic model, and suitable range of most used grey forecasting models; the similarity degree of grey incidences, the closeness degree of grey incidences and the three-dimensional absolute degree of grey incidence of grey incidence analysis models; the grey cluster model based on center-point and end-point mixed triangular whitenization functions; the multi-attribute intelligent grey target decision model, the two stages decision model with grey synthetic measure of grey decision models; grey game models, grey input-output models of grey combined models; and the problems of robust stability for grey stochastic time-delay systems of neutral type, distributed-delay type and neutral distributed-delay type of grey control, etc. And the new framework of grey system theory is given as well. Findings – The problems which remain for further studying are discussed at the end of each section. The reader could know the general picture of research and developing trend of grey system theory from this paper. Practical implications – A lot of successful practical applications of the new models to solve various problems have been found in many different areas of natural science, social science and engineering, including spaceflight, civil aviation, information, metallurgy, machinery, petroleum, chemical industry, electrical power, electronics, light industries, energy resources, transportation, medicine, health, agriculture, forestry, geography, hydrology, seismology, meteorology, environment protection, architecture, behavioral science, management science, law, education, military science, etc. These practical applications have brought forward definite and noticeable social and economic benefits. It demonstrates a wide range of applicability of grey system theory, especially in the situation where the available information is incomplete and the collected data are inaccurate. Originality/value – The reader is given a general picture of grey systems theory as a new model system and a new framework for studying problems where partial information is known; especially for uncertain systems with few data points and poor information. The problems remaining for further studying are identified at the end of each section.
PurposeThe purpose of this paper is to introduce the elementary concepts and fundamental principles of grey systems and the main components of grey systems theory. Also to discuss the astonishing progress that grey systems theory has made in the world of learning and its wide‐ranging applications in the entire spectrum of science.Design/methodology/approachThe characteristics of unascertained systems including incomplete information and inaccuracies in data are analysed and four uncertain theories: probability statistics, fuzzy mathematics, grey system and rough set theory are compared. The scientific principle of simplicity and how precise models suffer from inaccuracies are also shown.FindingsThe four uncertain theories, probability statistics, fuzzy mathematics, grey system and rough set theory are examined with different research objects, different basic sets, different methods and procedures, different data requirements, different emphasis, different objectives and different characteristics.Practical implicationsThe scientific principle of simplicity and how precise models suffer from inaccuracies are shown. So, precise models are not necessarily an effective means to deal with complex matters, especially in the case that the available information is incomplete and the collected data inaccurate.Originality/valueThe elementary concepts and fundamental principles of grey systems and the main components of grey systems theory are introduced briefly. The reader is given a general picture of grey systems theory as a new method for studying problems where partial information is known, partial information is unknown; especially for uncertain systems with few data points and poor information.
This paper discusses the application of grey numbers for uncertainty representation. It highlights the difference between grey sets and interval-valued fuzzy sets, and investigates the degree of greyness for grey sets. It facilitates the representation of uncertainty not only for elements of a set, but also the set itself as a whole. Our results show that a grey set could be specified for interval-valued fuzzy sets or rough sets under special conditions. With the notion of grey sets and their associated degrees of greyness, various set operations between grey sets are discussed.
PurposeThe purpose of this paper is to advance new rules about operations of grey numbers.Design/methodology/approachThe paper first puts forward the definitions of basic element of grey number and general grey number. The operation axiom, operation rules of general grey numbers and a new algebraic system for general grey numbers are built based on the “kernel” and the degree of greyness of grey numbers.FindingsUp to now, the operation of general grey numbers has been transformed to operation of real numbers; thus, the difficult problem for set up operation of general grey numbers has been solved to a certain degree.Practical implicationsThe method exposed in the paper can be used to integrate information from a different source. The operation of general grey numbers could be extended to the case of grey algebraic equation, grey differential equation and grey matrix which includes general grey numbers. The operation system of general grey numbers also opened a new passageway for research on grey input‐output and grey programming, etc.Originality/valueThe new conception of a basic element of grey number and general grey number was given for the first time in this paper. The novel operation rules of general grey numbers were also constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.