In clinic, many non-small cell lung cancer (NSCLC) patients receive radiation therapy after chemotherapy failure. However, whether the multidrug resistance (MDR) can elevate the radioresistance (RDR) remains unclear. To evaluate the MDR's effect on the RDR, screen MDR- and RDR-related proteins in human lung adenocarcinoma (HLA) cells and tissues A549, and A549/DDP cells after irradiation were analyzed by colony-forming assay and flow cytometry. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were utilized to identify differentially expressed proteins (DEPs) between them. The value of D0, Dq, and SF2 increased, the mean percentage in G2 phase and apoptosis rate significantly decreased in A549/DDP cells compared with A549 cells. 40 DEP points were found, and among them 27 were identified through proteomics. Four up-regulated proteins (HSPB1, Vimentin, Cofilin-1, and Annexin A4) in MDR cells compared with non-MDR cells, were confirmed by Western blot. Immuno-histochemistry showed that they were also over-expressed in MDR tissues compared with non-MDR counterparts of HLA. These results proved that the MDR in HLA cells and tissues increased the RDR. HSPB1, Vimentin, Cofilin-1, and Annexin A4 are potential biomarkers for predicting HLA response to MDR and RDR, and novel treatment targets of HLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.