Facile tailoring of photosensitizers (PSs) with advanced and synergetic properties is highly expected to broaden and deepen photodynamic therapy (PDT) applications. Herein, a catalyst‐free thiol–yne click reaction was employed to develop the sulfur atom‐based PSs by using the in situ formed sulfur “heavy atom effect” to enhance the intersystem crossing (ISC), while such an effect can be remarkably magnified by the polymerization. The introduction of a tetraphenylpyrazine‐based aggregation‐induced emission (AIE) unit was also advantageous in PS design by suppressing their non‐radiative decay to facilitate the ISC in the aggregated state. Besides, the resulting sulfur atom electron donor, together with a double‐bond π bridge and AIE electron acceptor, created a donor‐π‐acceptor (D‐π‐A) molecular system with good two‐photon excitation properties. Combined with the high singlet oxygen generation efficiency, the fabricated polymer nanoparticles exhibited an excellent in vitro two‐photon‐excited PDT towards cancer cells, therefore possessing a huge potential for the deep‐tissue disease therapy.
Much effort has been devoted to the generation of fluorescent probes by synthetic approaches. In this study, we developed a facile strategy to construct far-red fluorescent probes based on through-space charge transfer within complexes of acceptors and donors and their "twist + twist" interactions. Owing to their rare two-photon excitation property, the complexes could be used for in vivo imaging of the mouse cerebrovascular system.
Facile tailoring of photosensitizers (PSs) with advanced and synergetic properties is highly expected to broaden and deepen photodynamic therapy (PDT) applications. Herein, a catalyst-free thiol-yne click reaction was employed to develop the sulfur atom-based PSs by using the in situ formed sulfur "heavy atom effect" to enhance the intersystem crossing (ISC), while such an effect can be remarkably magnified by the polymerization. The introduction of a tetraphenylpyrazine-based aggregation-induced emission (AIE) unit was also advantageous in PS design by suppressing their non-radiative decay to facilitate the ISC in the aggregated state. Besides, the resulting sulfur atom electron donor, together with a double-bond π bridge and AIE electron acceptor, created a donor-π-acceptor (D-π-A) molecular system with good two-photon excitation properties. Combined with the high singlet oxygen generation efficiency, the fabricated polymer nanoparticles exhibited an excellent in vitro two-photon-excited PDT towards cancer cells, therefore possessing a huge potential for the deep-tissue disease therapy.
Much effort has been devoted to the generation of fluorescent probes by synthetic approaches. In this study, we developed a facile strategy to construct far-red fluorescent probes based on through-space charge transfer within complexes of acceptors and donors and their "twist + twist" interactions. Owing to their rare two-photon excitation property, the complexes could be used for in vivo imaging of the mouse cerebrovascular system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.