Heavy metal pollution related to non-ferrous metal smelting may pose a significant threat to human health. This study analyzed 58 surface soils collected from a representative non-ferrous metal smelting area to screen potentially hazardous heavy metals and evaluate their health risk in the studied area. The findings demonstrated that human activity had contributed to the pollution degrees of Cu, Cd, As, Zn, and Pb in the surrounding area of a non-ferrous metal smelting plant (NMSP). Cu, Cd, As, Zn, Pb, Ni, and Co pollution within the NMSP was serious. Combining the spatial distribution and Spearman correlations with principal component analysis (PCA), the primary sources of Cd, As, Pb, and Zn in surrounding areas were related to non-ferrous metal smelting and transportation activities. High non-cancer (THI = 4.76) and cancer risks (TCR = 2.99 × 10−4) were found for adults in the NMSP. Moreover, heavy metals in the surrounding areas posed a potential cancer risk to children (TCR = 3.62 × 10−6) and adults (TCR = 1.27 × 10−5). The significant contributions of As, Pb, and Cd to health risks requires special attention. The construction of a heavy metal pollution management system will benefit from the current study for the non-ferrous metal smelting industry.
Heavy metals generated from e-waste have created serious health risks for residents in e-waste disposal areas. This study assessed how airborne toxic metals from an e-waste dismantling park (EP) influenced surrounding residential areas after e-waste control. PM2.5, PM10, and total suspended particles (TSP) were sampled from 20 sites, including an EP, residential areas, and an urban site; ten kinds of metals were analyzed using ICP-MS and classified as PM2.5, PM2.5–10, and PM10–100. Results showed that metals at the EP tended to be in coarser particles, while metals from residential areas tended to be in finer particles. A source analysis showed that metals from the EP and residential areas may have different sources. Workers’ cancer and non-cancer risks were higher when exposed to PM2.5–10 metals, while residents’ risks were higher when exposed to PM2.5 metals. As and Cr were the most strongly associated with cancer risks, while Mn was the most strongly associated with the non-cancer risk. Both workers and residents had cancer risks (>1.0 × 10−6), but risks were lower for residents. Therefore, e-waste control can positively affect public health in this area. This study provides a basis for further controlling heavy metal emissions into the atmosphere by e-waste dismantling and encouraging worldwide standardization of e-waste dismantling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.