Lung cancer is the leading cause of cancer deaths worldwide, with a high morbidity and less than 20% survival rate. Therefore, new treatment strategies and drugs are needed to reduce the mortality of patients with lung cancer. 7 nicotinic acetylcholine receptor (7 nAChR), as a receptor of nicotine and its metabolites, is a potential target for lung cancer treatment. Our previous studies revealed that sinomenine plays anti-inflammation roles via 7 nAChR and down-regulates the expression of this receptor, thus increasing the inflammatory response. Hence, sinomenine is possibly a natural ligand of this receptor. In the present study, the effects of sinomenine on lung cancer A549 cells and tumor-bearing mice were determined to investigate whether this alkaloid has an inhibitory effect on lung cancer via 7 nAChR. CCK-8 assay, wound-healing test, and flow cytometry were performed for cell proliferation, cell migration, and apoptosis analysis in vitro, respectively. Xenograft mice were used to evaluate the effects of sinomenine in vivo. Results showed that sinomenine decreased cell proliferation and migration abilities but increased the percentage of apoptotic cells. Tumor volume in tumor-bearing mice was significantly reduced after sinomenine treatment compared with that in the vehicle group mice (p < 0.05). Furthermore, the effects of sinomenine were abolished by the 7 nAChR antagonist mecamylamine and the allosteric modulator PNU-120596, but no change occurred when the mice were pretreated with the muscarinic acetylcholine receptor antagonist atropine. Meanwhile, sinomenine suppressed 7 nAChR expression in vitro and in vivo, as well as the related signaling molecules pERK1/2 and ERK1/2 and the transcription factors TTF-1 and SP-1. By contrast, sinomenine up-regulated the expression of another transcription factor, Egr-1. These effects were restricted by mecamylamine and PNU but not by atropine. Results suggested that sinomenine can inhibit lung cancer via 7 nAChR in a negative feedback mode.
Isoorientin has anti-inflammatory effects; however, the mechanism remains unclear. We previously found isoorientin is an inhibitor of glycogen synthase kinase 3β (GSK3β) in vitro. Overactivation of GSK3β is associated with inflammatory responses. GSK3β is inactivated by phosphorylation at Ser9 (i.e., p-GSK3β). Lithium chloride (LiCl) inhibits GSK3β and also increases p-GSK3β (Ser9). The present study investigated the anti-inflammatory effect and mechanism of isoorientin via GSK3β regulation in lipopolysaccharide- (LPS-) induced RAW264.7 murine macrophage-like cells and endotoxemia mice. LiCl was used as a control. While AKT phosphorylates GSK3β, MK-2206, a selective AKT inhibitor, was used to activate GSK3β via AKT inhibition (i.e., not phosphorylate GSK3β at Ser9). The proinflammatory cytokines TNF-α, IL-6, and IL-1β were detected by ELISA or quantitative real-time PCR, while COX-2 by Western blotting. The p-GSK3β and GSK3β downstream signal molecules, including NF-κB, ERK, Nrf2, and HO-1, as well as the tight junction proteins ZO-1 and occludin were measured by Western blotting. The results showed that isoorientin decreased the production of TNF-α, IL-6, and IL-1β and increased the expression of p-GSK3β in vitro and in vivo, similar to LiCl. Coadministration of isoorientin and LiCl showed antagonistic effects. Isoorientin decreased the expression of COX-2, inhibited the activation of ERK and NF-κB, and increased the activation of Nrf2/HO-1 in LPS-induced RAW264.7 cells. Isoorientin increased the expressions of occludin and ZO-1 in the brain of endotoxemia mice. In summary, isoorientin can inhibit GSK3β by increasing p-GSK3β and regulate the downstream signal molecules to inhibit inflammation and protect the integrity of the blood-brain barrier and the homeostasis in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.