Compared with the traditional collocated multi-input multi-output system (C-MIMO), distributed MIMO (D-MIMO) systems have the advantage of higher throughput and coverage, making them strong candidates for next-generation communication architecture. As a practical implementation of a D-MIMO cooperative network, the multi-TRP (multiple transmission/reception point) system becomes a hotspot in the research of advanced 5G. Different from previous research on a cooperative D-MIMO network with single narrowband transmission, this paper proposes a joint optimization scheme to address the user scheduling problem along with carrier allocation to maximize the total spectral efficiency (SE) in the downlink of coherent multi-TRP systems with multi-carriers. We establish a joint optimization model of user scheduling and resource allocation to maximize the system spectral efficiency under the constraints of power consumption and the backhaul capacity limits at each RAU (remote antenna unit), as well as the QoS (quality of service) requirement at each user. Since the optimization model is both non-covex and non-smooth, a joint optimization algorithm is proposed to solve this non-convex combinatorial optimization problem. We first smooth the mixed-integer problem by employing penalty functions, and after decoupling the coupled variables by introducing auxiliary variables, the original problem is transformed into a series of tractable convex optimization problems by using successive convex approximation (SCA). Numerical results demonstrate that the proposed joint optimization algorithm for user scheduling and resource allocation can reliably converge and achieve a higher system SE than the general multi-TRP system without carrier allocation, and this advantage is more pronounced under a higher backhaul capacity or higher power consumption constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.