The cyclic AMP receptor protein (CRP) is a bacterial regulator that controls more than 100 promoters, including those involved in catabolite repression. In the present study, a null deletion of the crp gene was constructed for Yersinia pestis bv. microtus strain 201. Microarray expression analysis disclosed that at least 6% of Y. pestis genes were affected by this mutation. Further reverse transcription-PCR and electrophoretic mobility shift assay analyses disclosed a set of 37 genes or putative operons to be the direct targets of CRP, and thus they constitute the minimal CRP regulon in Y. pestis. Subsequent primer extension and DNase I footprinting assays mapped transcriptional start sites, core promoter elements, and CRP binding sites within the DNA regions upstream of pla and pst, revealing positive and direct control of these two laterally acquired plasmid genes by CRP. The crp disruption affected both in vitro and in vivo growth of the mutant and led to a >15,000-fold loss of virulence after subcutaneous infection but a <40-fold increase in the 50% lethal dose by intravenous inoculation. Therefore, CRP is required for the virulence of Y. pestis and, particularly, is more important for infection by subcutaneous inoculation. It can further be concluded that the reduced in vivo growth phenotype of the crp mutant should contribute, at least partially, to its attenuation of virulence by both routes of infection. Consistent with a previous study of Y. pestis bv. medievalis, lacZ reporter fusion analysis indicated that the crp deletion resulted in the almost absolute loss of pla promoter activity. The plasminogen activator encoded by pla was previously shown to specifically promote Y. pestis dissemination from peripheral infection routes (subcutaneous infection [flea bite] or inhalation). The above evidence supports the notion that in addition to the reduced in vivo growth phenotype, the defect of pla expression in the crp mutant will greatly contribute to the huge loss of virulence of this mutant strain in subcutaneous infection.
The ferric uptake regulator (Fur) is a predominant bacterial regulator controlling the iron assimilation functions in response to iron availability. Our previous microarray analysis on Yersinia pestis defined the iron-Fur modulon. In the present work, we reannotated the iron assimilation genes in Y. pestis, and the resulting genes in complementation with those disclosed by microarray constituted a total of 34 genome loci (putative operons) that represent the potential iron-responsive targets of Fur. The subsequent real-time reverse transcription-PCR (RT-PCR) in conjunction with the primer extension analysis showed that 32 of them were regulated by Fur in response to iron starvation. A previously predicted Fur box sequence was then used to search against the promoter regions of the 34 operons; the homologue of the above box could be predicted in each promoter tested. The subsequent electrophoretic mobility shift assay (EMSA) demonstrated that a purified His 6 tag-fused Fur protein was able to bind in vitro to each of these promoter regions. Therefore, Fur is a global regulator, both an activator and a repressor, and directly controls not only almost all of the iron assimilation functions but also a variety of genes involved in various non-iron functions for governing a complex regulatory cascade in Y. pestis. In addition, real-time RT-PCR, primer extension, EMSA, and DNase I footprinting assay were used to elucidate the Fur regulation of the ybt locus encoding a virulence-required iron uptake system. By combining the published data on the YbtA regulation of ybt, we constructed a concise Fur/YbtA regulatory network with a map of the Fur-promoter DNA interactions within the ybt locus. The data presented here give us an overview of the iron-responsive Fur regulon in Y. pestis.
The rapid emergence of antibiotic resistance (AR) is a major public health concern. Recent findings on the prevalence of food-borne antibiotic-resistant (ART) commensal bacteria in ready-to-consume food products suggested that daily food consumption likely serves as a major avenue for dissemination of ART bacteria from the food chain to human hosts. To properly assess the impact of various factors, including the food chain, on AR development in hosts, it is important to determine the baseline of ART bacteria in the human gastrointestinal (GI) tract. We thus examined the gut microbiota of 16 infant subjects, from the newborn stage to 1 year of age, who fed on breast milk and/or infant formula during the early stages of development and had no prior exposure to antibiotics. Predominant bacterial populations resistant to several antibiotics and multiple resistance genes were found in the infant GI tracts within the first week of age. Several ART population transitions were also observed in the absence of antibiotic exposure and dietary changes. Representative AR gene pools including tet(M), ermB, sul2, and bla TEM were detected in infant subjects. Enterococcus spp., Staphylococcus spp., Klebsiella spp., Streptococcus spp., and Escherichia coli/Shigella spp. were among the identified AR gene carriers. ART bacteria were not detected in the infant formula and infant foods examined, but small numbers of skin-associated ART bacteria were found in certain breast milk samples. The data suggest that the early development of AR in the human gut microbiota is independent of infants' exposure to antibiotics but is likely impacted by exposure to maternal and environmental microbes during and after delivery and that the ART population is significantly amplified within the host even in the absence of antibiotic selective pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.