Surface groups of the host polystyrene beads play an important role in the properties of the polymer-based nano-CdS composites in terms of the distribution, dispersion, crystal structure, pH-dependent stability of nano-CdS, and thereafter affect their photocatalytic activity. Surface modification of the host materials can be taken as an effective and general approach to mediate the structure and properties of the nanocomposite materials.
Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.
A novel nanocomposite photocatalyst, D201-CdS beads (0.70-0.80 mm in diameter), was fabricated for visible light (λ > 420 nm) photodegradation of Rhodamine B (RhB). Sphalerite CdS nanoparticles (5-15 nm) were distributed within the outer layer of D201 for favorable visible light permeation. Ultraviolet-visible spectral changes of RhB solution indicated that efficient RhB photodegradation was achieved by D201-CdS under visible light irradiation. More attractively, negligible photocorrosion of the hybrid catalyst D201-CdS was demonstrated by the constant photodegradation efficiency and negligible CdS leaching during five-cycle batch runs. Besides the higher stability, D201-CdS is superior to CdS in terms of separation. The used nanocomposite can be readily separated from solutions by a simple filtration while a high speed centrifugation is needed for the separation of CdS. The above results suggested that the resultant D201-CdS nanocomposite catalyst is promising for practical application in environmental remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.