Previous studies by our group demonstrated that radix Sophorae tonkinensis could induce hepatotoxicity. However, it remains unclear which components of this herb may be responsible for its hepatotoxicity. The present study aimed to investigate the hepatic toxicity of treatment with matrine (MT) and oxymatrine (OMT) alone or simultaneously. Furthermore, the current study aimed to identify whether the hepatotoxicity induced by OMT is actually the toxic characterization of its metabolite MT. Hepatotoxicity was evaluated by biochemical and histopathological approaches in subchronic toxicity in mice, as well as via evaluation of cytotoxicity and enzyme leakage in AML12 liver cells. The results indicated that treatment of mice with OMT and MT individually or simultaneously resulted in centrilobular hypertrophy in the liver at doses equivalent to that contained in radix S. tonkinensis at a hepatotoxic dose, suggesting that MT and OMT are likely hepatotoxic components of this herb. OMT-induced hepatotoxicity may be primarily exerted via its metabolite MT in mice. Furthermore, OMT combined with MT was observed to be more toxic compared with OMT or MT alone. These results extend our understanding of the hepatotoxicity of radix S. tonkinensis and its active ingredients.
The beneficial effects of electroacupuncture (EA) at Shuigou (GV26) and Neiguan (PC6) on poststroke rehabilitation are critically related to the activation of the delta-opioid receptor (DOR). The underlying anti-inflammatory mechanisms in DOR activation and EA-mediated neuroprotection in cerebral ischemia/reperfusion (I/R) injury were investigated in the current study. Cell proliferation and apoptosis were detected by morphological changes, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) release, and TUNEL staining. The mRNA levels were evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR), and the protein expression was measured by western blot or enzyme-linked immunosorbent assay (ELISA) in vitro. Infarct volume was examined by cresyl violet (CV) staining, neurologic recovery was assessed by neurological deficit scores, and pro- and anti-inflammatory cytokines were determined by immunofluorescence in vivo. DOR activation greatly ameliorated morphological injury, reduced LDH leakage and apoptosis, and increased cell viability. It reversed the oxygen-glucose deprivation/reoxygenation- (OGD/R-) induced downregulation of DOR mRNA and protein, as well as BDNF protein. DOR activation also reduced proinflammatory cytokine gene expression, including TNF-α, IL-1β, and IL-6, and at the same time, increased anti-inflammatory cytokines IL-4 and IL-10 in OGD/R challenged PC12 cells. EA significantly reduced middle cerebral artery occlusion/reperfusion- (MCAO/R-) induced infarct volume and attenuated neurologic deficit scores. It markedly increased the expression of IL-10 and decreased IL-1β, while sham EA did not have any protective effect in MCAO/R-injured rats. DOR activation plays an important role in neuroprotection against OGD/R injury by inhibiting inflammation via the brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) pathway. The neuroprotective efficacy of EA at Shuigou (GV26) and Neiguan (PC6) on cerebral I/R injury may be also related to the inhibition of inflammatory response through the DOR-BDNF/TrkB pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.