Several ongoing international efforts are developing methods of localizing single cells within organs or mapping the entire human body at the single cell level, including the Chan Zuckerberg Initiative's Human Cell Atlas (HCA), and the Knut and Allice Wallenberg Foundation's Human Protein Atlas (HPA), and the National Institutes of Health's Human BioMolecular Atlas Program (HuBMAP). Their goals are to understand cell specialization, interactions, spatial organization in their natural context, and ultimately the function of every cell within the body. In the same way that the Human Genome Project had to assemble sequence data from different people to construct a complete sequence, multiple centers around the world are collecting tissue specimens from a diverse population that varies in age, race, sex, and body size. A challenge will be combining these heterogeneous tissue samples into a 3D reference map that will enable multiscale, multidimensional Google Maps-like exploration of the human body. Key to making alignment of tissue samples work is identifying and using a coordinate system called a Common Coordinate Framework (CCF), which defines the positions, or "addresses", in a reference body, from whole organs down to functional tissue units and individual cells. In this perspective, we examine the concept of a CCF based on the vasculature and describe why it would be an attractive choice for mapping the human body.
The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.HuBMAP was founded with the goal of establishing state-of-the-art frameworks for building spatial multiomic maps of non-diseased human organs at single-cell resolution 1 . During the first phase (2018)(2019)(2020)(2021)(2022), the priorities of the project included the validation and development of assay platforms; workflows for data processing, management, exploration and visualization; and the establishment of protocols, quality control standards and standard operating procedures. Extensive infrastructure was established through a coordinated effort among the various HuB-MAP integration, visualization and engagement teams, tissue-mapping centres, technology and tools development and rapid technology implementation teams and working groups 1 . Single-cell maps, predominantly consisting of two-dimensional (2D) spatial data as well as data from dissociated cells, were generated for several organs. The HuBMAP Data Portal (https://portal.hubmapconsortium.org) was established for open access to experimental tissue data and reference atlas data.The infrastructure was augmented with software tools for tissue data registration, processing, annotation, visualization, cell segmentation and automated annotation of cell types and cellular neighbourhoods from spatial data. Computational methods were developed for integrating multiple data types across scales and interpretation 2 . Standard reference terminology and a common coordinate framework spanning anatomical to biomolecular scales were established to ensure interoperability across organs, research groups and consortia 3 . Guidelines to capture high-quality multiplexed spatial data 4 were established including validated panels of cell-and structure-specific antibodies 5 . The first phase produced a large number of manuscripts (https://commonfund.nih.gov/ publications?pid=43) including spatially resolved single-cell maps [6][7][8][9][10][11] .The production phase of HuBMAP was launched in the autumn of 2022. The focus is on scaling data production spanning diverse biological variables (for example, age and ethnicity) and deployment and enhancement of analytical, visualization and navigational tools to generate high-resolution 3D accessible maps of major functional tissue units from more than 20 organs. This phase involves over 60 institutions and 400 researchers with opportunities for active intra-and inter-consortia collaborations and building a foundational resource for new biological insights and precision medicine. Below, ...
Several international consortia are collaborating to construct a human reference atlas, which is a comprehensive, high-resolution, three-dimensional atlas of all the cells in the healthy human body. Laboratories around the world are collecting tissue specimens from donors varying in sex, age, ethnicity, and body mass index. However, integrating and harmonizing tissue data across 20+ organs and more than 15 bulk and spatial single-cell assay types poses diverse challenges. Here we present the software tools and user interfaces developed to annotate ("register") and explore the collected tissue data. A key part of these tools is a common coordinate framework, which provides standard terminologies and data structures for describing specimens, biological structures, and spatial positions linked to existing ontologies. As of December 2021, the "registration" user interface has been used to harmonize and make publicly available data on 6,178 tissue sections from 2,698 tissue blocks collected by the Human Biomolecular Atlas Program, the Stimulating Peripheral Activity to Relieve Conditions program, the Human Cell Atlas, the Kidney Precision Medicine Project, and the Genotype Tissue Expression project. The second "exploration" user interface enables consortia to evaluate data quality and coverage, explore tissue data in the context of the human body, and guide data acquisition.
Seventeen international consortia are collaborating on a human reference atlas (HRA), a comprehensive, high-resolution, three-dimensional atlas of all the cells in the healthy human body. Laboratories around the world are collecting tissue specimens from donors varying in sex, age, ethnicity, and body mass index. However, harmonizing tissue data across 25 organs and more than 15 bulk and spatial single-cell assay types poses challenges. Here, we present software tools and user interfaces developed to spatially and semantically annotate (“register”) and explore the tissue data and the evolving HRA. A key part of these tools is a common coordinate framework, providing standard terminologies and data structures for describing specimen, biological structure, and spatial data linked to existing ontologies. As of April 22, 2022, the “registration” user interface has been used to harmonize and publish data on 5,909 tissue blocks collected by the Human Biomolecular Atlas Program (HuBMAP), the Stimulating Peripheral Activity to Relieve Conditions program (SPARC), the Human Cell Atlas (HCA), the Kidney Precision Medicine Project (KPMP), and the Genotype Tissue Expression project (GTEx). Further, 5,856 tissue sections were derived from 506 HuBMAP tissue blocks. The second “exploration” user interface enables consortia to evaluate data quality, explore tissue data spatially within the context of the HRA, and guide data acquisition. A companion website is at https://cns-iu.github.io/HRA-supporting-information/.
Mapping the human body at single cell resolution in three dimensions (3D) is important for understanding cellular interactions in context of tissue and organ organization. 2D spatial cell analysis in a single tissue section may be limited by cell numbers and histology. Here we show a workflow for 3D reconstruction of multiplexed sequential tissue sections: MATRICS-A (Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial - Analysis). We demonstrate MATRICS-A in 26 serial sections of fixed skin (stained with 18 biomarkers) from 12 donors aged between 32–72 years. Comparing the 3D reconstructed cellular data with the 2D data, we show significantly shorter distances between immune cells and vascular endothelial cells (56 µm in 3D vs 108 µm in 2D). We also show 10–70% more T cells (total) within 30 µm of a neighboring T helper cell in 3D vs 2D. Distances of p53, DDB2 and Ki67 positive cells to the skin surface were consistent across all ages/sun exposure and largely localized to the lower stratum basale layer of the epidermis. MATRICS-A provides a framework for analysis of 3D spatial cell relationships in healthy and aging organs and could be further extended to diseased organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.