To investigate changes in transcript and relative protein levels in response to salicylic acid regulation of the thermotolerance in U. prolifera, complementary transcriptome and proteome analyses were performed with U. prolifera grown at 35 °C (UpHT) and with the addition of SA at high temperature (UpSHT). At mRNA level,12,296 differentially expressed genes (DEGs) were obtained from the comparison of UpSHT with UpHT. iTRAQ-labeling proteome analysis showed that a total of 4,449 proteins were identified and reliably quantified. At mRNA level, the up-regulated genes involved in antioxidant activity were thioredoxin,peroxiredoxin,FeSOD, glutathione peroxidase, partion catalase and MnSOD. The down-regulated genes were ascorbate peroxidase, glutathione S-transferase, catalase and MnSOD. In addition, the DEGs involved in plant signal transduction pathway (such as auxin response factors, BRI1 and JAZ) were down-regulated. At protein level, the up-regulated proteins involved in carbon fixation and the down-regulated protein mainly were polyubiquitin, ascorbate peroxidase. The expression of Ca2+-binding protein, heat shock protein and photosynthesis-related proteins, EDS1 were also significantly regulated both at mRNA and protein level. The results indicated that SA alleviated the high-temperature stimulus through partion antioxidant related proteins up-regulated, JA signal pathway enchanced, Ca2+-binding proteins, photosynthesis-related proteins significantly changed, antioxidant enzyme activities increased and photosynthesis index changed.
Bacterioplankton play a key role in the global cycling of elements. To characterize the effects of hypoxia on bacterioplankton, bacterial community structure and function were investigated in the Changjiang Estuary. Water samples were collected from three layers (surface, middle, and bottom) at ten sampling sites in the Changjiang Estuary hypoxic and non-hypoxic zones. The community structure was analyzed using high-throughput sequencing of 16S rDNA genes, and the predictive metagenomic approach was used to investigate the functions of the bacterial community. Co-occurrence networks are constructed to investigate the relationship between different bacterioplankton. The results showed that community composition in hypoxic and non-hypoxic zones were markedly different. The diversity and richness of bacterial communities in the bottom layer (hypoxic zone) were remarkably higher than that of the surface layer (non-hypoxic). In the non-hypoxic zone, it was found that Proteobacteria, Bacteroidetes, and Flavobacteriia were the dominant groups while Alphaproteobacteria, SAR406 and Deltaproteobacteria were the dominant groups in the hypoxic zone. From the RDA analysis, it was shown that dissolved oxygen (DO) explained most of the bacterial community variation in the redundancy analysis targeting only hypoxia zones, whereas nutrients and salinity explained most of the variation across all samples in the Changjiang Estuary. To understand the genes involved in nitrogen metabolism, an analysis of the oxidation state of nitrogen was performed. The results showed that the bacterial community in the surface layer (non-hypoxic) had more genes involved in dissimilatory nitrate reduction, assimilatory nitrate reduction, denitrification, and anammox, while that in the middle and bottom layers (hypoxic zone) had more abundant genes associated with nitrogen fixation and nitrification. Co-occurrence networks revealed that microbial assemblages in the middle and bottom layers shared more niche spaces than in the surface layer (non-hypoxic zone). The environmental heterogeneity in the hypoxic and non-hypoxic zones might be important environmental factors that determine the bacterial composition in these two zones.
A strain was isolated from an activated sludge system and identified as Halomonas piezotolerans HN2 in this study, which is the first strain in H. piezotolerans with the capability of heterotrophic nitrification and aerobic denitrification. Strain HN2 showed the maximum nitrogen removal rate of 9.10 mg/L/h by utilizing ammonium at the salinity of 3.0%. Under saline environment, HN2 could remove nitrogen efficiently in neutral and slightly alkaline environments, with the carbon sources of sodium succinate and sodium citrate and the C/N ratio of 15-20, and the maximum removal efficiencies of ammonium, nitrite, and nitrate were 100%, 96.35%, and 99.7%, respectively.The genomic information revealed the presence of amoA, napA, and nosZ genes in strain HN2, and the target bands of nirS were obtained via a polymerase chain reaction. Therefore, we inferred that ammonium was mainly utilized for the growth of strain HN2 through assimilation, and another part of the initial ammonium was converted into nitrate through nitrification, and then into gaseous nitrogen through denitrification. This report indicated the potential application of strain HN2 and other nitrifying and denitrifying Halomonas strains in the removal of nitrogen pollution in marine-related environments and also implies the important role of Halomonas in the nitrogen cycle process of the ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.