Generally, histone deacetylase (HDAC) inhibitor-induced p21Waf1/Cip1 expression is thought to be p53 independent. Here we found that an inhibitor of HDAC, depsipeptide (FR901228), but not trichostatin A (TSA), induces p21 Waf1/Cip1 expression through both p53 and Sp1/Sp3 pathways in A549 cells (which retain wild-type p53). This is demonstrated by measuring relative luciferase activities of p21 promoter constructs with p53 or Sp1 binding site mutagenesis and was further confirmed by transfection of wild-type p53 into H1299 cells (p53 null). That p53 was acetylated after depsipeptide treatment was tested by sequential immunoprecipitation/Western immunoblot analysis with anti-acetylated lysines and anti-p53 antibodies. The acetylated p53 has a longer half-life due to a significant decrease in p53 ubiquitination. Further study using site-specific antiacetyllysine antibodies and transfection of mutated p53 vectors (K319/K320/K321R mutated and K373R/K382R mutations) into H1299 cells revealed that depsipeptide specifically induces p53 acetylation at K373/K382, but not at K320. As assayed by coimmunoprecipitation, the K373/K382 acetylation is accompanied by a recruitment of p300, but neither CREB-binding protein (CBP) nor p300/CBP-associated factor (PCAF), to the p53 C terminus. Furthermore, activity associated with the binding of the acetylated p53 at K373/K382 to the p21 promoter as well as p21Waf1/Cip1 expression is significantly increased after depsipeptide treatment, as tested by chromatin immunoprecipitations and Western blotting, respectively. In addition, p53 acetylation at K373/K382 is confirmed to be required for recruitment of p300 to the p21 promoter, and the depsipeptide-induced p53 acetylation at K373/K382 is unlikely to be dependent on p53 phosphorylation at Ser15, Ser20, and Ser392 sites. Our data suggest that p53 acetylation at K373/K382 plays an important role in depsipeptide-induced p21 Waf1/Cip1 expression.
This paper describes the synthesis, self-assembly, and characterization of a new class of highly stable hydrazide-based quadruply hydrogen-bonded heterodimers. All of the hydrazide-derived heterodimers possess the complementary ADDA-DAAD hydrogen-bonding sequences. Hydrazide derivatives 1, which has two intramolecular S(6) RO.H-N hydrogen bonds, and 2 complex to afford two fastly exchanging isomeric heterodimers 1.2 and 1.2' in chloroform, as a result of two different conformational arrangements of 2. An average binding constant K(assoc) of 4.7 x 10(4) M(-)(1) was determined for heterodimer 1.2 and 1.2' by (1)H NMR titration of 1 with changing 2 in chloroform-d. In contrast, 1 binds 11 and 12, both of which are introduced with two intramolecular S(6) hydrogen bonds, to exclusively afford heterodimers 1.11 and 1.12, with K(assoc) values of 1.8 x 10(4) and 5.0 x 10(2) M(-)(1), respectively. Fluorine-containing 19, which has a hydrazide skeleton identical to that of 1 but two intramolecular S(6) F.H-N hydrogen bonds, can also complex with 2, 11, and 12, to afford heterodimers 19.2, 19.2', 19.11, and 19.12, with K(assoc) values of of 1.2 x 10(4) (average value for 19.2 and 19.2'), 5.4 x 10(3), and 1.9 x 10(2) M(-)(1), respectively. The structures of the new heterodimers have been proven with NOESY, IR, and VPO (for some of the heterodimers) experiments. Moreover, 1 and 19 can also strongly bind 2,7-dilauroylamido-1,8-naphthyridine 23 to afford dimers 1.23 and 19.23 with K(assoc) values of 6.0 x 10(5) and 1.4 x 10(5) M(-)(1), respectively. Adding 1 to the 1:1 solution of 23 and 1-octyl-3-(4-oxo-3,4-dihydro-pyrido[2,3-d]pyrimidin-2-yl)urea 24 or 1-octyl-3-(4-oxo-1,4-dihydro-pyrimidin-2-yl)urea 25, which had been developed initially by Zimmerman and Meijer, respectively, induces dimers 23.24 and 23.25 to dissociate, leading to the formation of dimers 1.23 and 24.24 or 25.25, respectively. The new hydrazide-based hydrogen-bonding modules described are useful building blocks for self-assembly and open a new avenue to recognition between discrete supramolecular species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.