Infrared image enhancement technology can effectively improve the image quality and enhance the saliency of the target and is a critical component in the marine target search and tracking system. However, the imaging quality of maritime infrared images is easily affected by weather and sea conditions and has low contrast defects and weak target contour information. At the same time, the target is disturbed by different intensities of sea clutter, so the characteristics of the target are also different, which cannot be processed by a single algorithm. Aiming at these problems, the relationship between the directional texture features of the target and the roughness of the sea surface is deeply analyzed. According to the texture roughness of the waves, the image scene is adaptively divided into calm sea surface and rough sea surface. At the same time, through the Gabor filter at a specific frequency and the gradient-based target feature extraction operator proposed in this paper, the clutter suppression and feature fusion strategies are set, and the target feature image of multi-scale fusion in two types of scenes are obtained, which is used as a guide image for guided filtering. The original image is decomposed into a target and a background layer to extract the target features and avoid image distortion. The blurred background around the target contour is extracted by Gaussian filtering based on the potential target region, and the edge blur caused by the heat conduction of the target is eliminated. Finally, an enhanced image is obtained by fusing the target and background layers with appropriate weights. The experimental results show that, compared with the current image enhancement method, the method proposed in this paper can improve the clarity and contrast of images, enhance the detectability of targets in distress, remove sea surface clutter while retaining the natural environment features in the background, and provide more information for target detection and continuous tracking in maritime search and rescue.
Judicious use of lamps is of profound significance to improve the internal traffic safety of tunnels. This study evaluated the effect of LED color on human visual fatigue under mesopic vision category. According to the difference of human eyes’ response to different wavelengths of light radiation, the mesopic vision spectral luminous efficiency curve is applied to the visual fatigue evaluation methods. Taking the critical fusion frequency as the physiological index, the detection experiment of human visual fatigue was carried out in the simulated tunnel environment. The results show that spectrum with high color rendering index has a positive effect on alleviating drivers’ visual fatigue, and is more suitable for tunnel interior lighting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.