Poly(lactic acid) (PLA) biocomposites are usually plasticized to overcome the problem of poor ductility, which decreases the valuable tensile strength. In this study, novel nanofibrillated cellulose (NFC) was extracted to enhance the acetyl tributyl citrate (ATBC) plasticized PLA biocomposites. Interestingly, NFC not only exhibited an excellent strengthening effect but also showed a further toughening effect in the biocomposites. When 4 wt% NFC was added, the tensile strength, elongation at break, and impact strength of the biocomposites with 15 wt% ATBC and 20 wt% ATBC reached 52.6 MPa, 28.4%, 34.9 J/m and 35.8 MPa, 300.1%, 40 J/m, respectively. This is at least 1.1 folds higher in strength and 2.3 folds higher in impact toughness than the biocomposites without NFC. Glass transition and melting temperature slightly increased with NFC addition. More importantly, the mechanism of the strengthening and toughening effect was definitely elucidated, and the comprehensive performance of the application was evaluated. The findings of the study provide significant guidance for PLA application, such as in food packaging, medical engineering materials, and household products.
The panoramic video technology is introduced to collect multiangle data of design objects, draw a 3D spatial model with the collected data, solve the first-order differential equation for the 3D spatial model, obtain the spatial positioning extremes of the object scales, and realize the alignment and fusion of panoramic video images according to the positioning extremes above and below the scale space. Then, the panoramic video is generated and displayed by computer processing so that the tourist can watch the scene with virtual information added to the panoramic video by wearing the display device elsewhere. It solves the technical difficulties of the high complexity of the algorithm in the system of panoramic video stitching and the existence of stitching cracks and the “GHOST” phenomenon in the stitched video, as well as the technical difficulties that the 3D registration is easily affected by the time-consuming environment and target tracking detection algorithm. The simulation results show that the panoramic video stitching method performs well in real time and effectively suppresses stitching cracks and the “GHOST” phenomenon, and the augmented reality 3D registration method performs well for the local enhancement of the panoramic video.
With the development of degradation technologies such as chemical‐catalysis and bio‐catalysis, starch‐polyethylene (PE) composites have been revitalized as industrial packaging materials. However, starch and PE suffer from interfacial incompatibility. In this study, poly(octene ethylene) grafted glycidyl methacrylate (POE‐g‐GMA) was added at relatively low amounts (0–7 wt%) to construct robust structures between thermoplastic starch (TPS) and low‐density polyethylene (LDPE). Tensile strength increased by 36.39% with the addition of 1 wt% POE‐g‐GMA. Meanwhile, a smooth surface was observed by SEM, and a fibrillar cross‐linked structure appeared on the fractural surface of the blend. POE‐g‐GMA formed a stable “bridge” at the interface between TPS and LDPE, which increased the thermal stability of the blend as well. The crystallinity of LDPE increased from 20.5% (without addition) to 32.8% (with 1 wt% addition), whereas the average crystallite size decreased slightly. The optimal POE‐g‐GMA content was found to be 1 wt% based on mechanical and thermal measurements. The results of this study can provide a reference for improving the interfacial compatibility of biopolymers and fossil‐fuel‐based polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.