The novel cascade photoredox/iodide catalytic system enables the alkene to serve as a radical acceptor capable of achieving aminodifluoroalkylation of alkenes. Cheap iodide salts play a vital role in this reaction, which could tune carbocation reactivity through reversible C-I bond formation for controlling reaction selectivity, and a series of competitive reactions are completely eliminated in the presence of multiple reactivity pathways. The present dual catalytic protocol affords a very convenient method for direct synthesis of various difluoro-γ-lactams from simple and readily available starting materials under mild reaction conditions.
The reductive single electron transfer (SET) umpolung amination of aldehyde-derived hydrazones has been developed through visible-light-promoted photoredox catalysis. The ideal transformation of hydrazones into the corresponding hydrazonamide through selective carbon-hydrogen (C-H) bond functionalization represents one of the most step- and atom-economical methods. This SET umpolung strategy features mild conditions and a remarkably broad substrate scope, offering an entirely new substrate class to direct C-H amination.
Visible light induced photoredox catalysis is an efficient method for radical activation. Herein, we report the photoredox catalysis involving an intramolecular radical-radical coupling reaction that proceeds through a biradical intermediate. This protocol represents a new synthetic route to construct multi-substituted N-heterocycles. Four, five and six-membered N-heterocyclic structures with a quaternary carbon center are accessible under mild conditions.
A relay visible-light photoredox catalysis strategy has been accomplished. Three successive photoredox cycles (one oxidative quenching cycle and two reductive quenching cycles) are engaged in a single reaction with one photocatalyst. This strategy enables formal [4 + 1] annulation of hydrazones with 2-bromo-1,3-dicarbonyl compounds, which functionalizes three C-H bonds of hydrazones. This method affords rapid access to a complex and biologically important pyrazole scaffold in a step-economical manner with high efficiency under mild conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.