Objective Uric acid (UA) activates the NLRP3-ASC-caspase-1 axis and triggers cascade inflammatory that leads to hyperuricemic nephropathy and hyperuricemia-induced renal tubular injury. The original study aims to verify the positive effects of the traditional Chinese medicinal formula Shizhifang (SZF) on ameliorating the hyperuricemia, tubular injury, and inflammasome infiltration in the kidneys of hyperuricemic lab rats. Method Twenty-eight male Sprague-Dawley rats were divided into four groups: control group, oxonic acid potassium (OA) model group, OA + SZF group, and OA + Allopurinol group. We evaluated the mediating effects of SZF on renal mitochondrial reactive oxygen species (ROS) and oxidative stress (OS) products, protein expression of NLRP3-ASC-caspase-1 axis, and downstream inflammatory factors IL-1β and IL-18 after 7 weeks of animals feeding. Result SZF alleviated OA-induced hyperuricemia and inhibited OS in hyperuricemic rats (P < 0.05). SZF effectively suppressed the expression of gene and protein of the NLRP3-ASC-caspase-1 axis through accommodating the ROS-TXNIP pathway (P < 0.05). Conclusion Our data suggest that SZF alleviates renal tubular injury and inflammation infiltration by inhibiting NLRP3 inflammasome activation triggered by mitochondrial ROS in the kidneys of hyperuricemic lab rats.
Objective To explore the effect and mechanism of ShiZhiFang on uric acid metabolism. Methods 40 rats were divided into normal group, model group, ShiZhiFang group, and benzbromarone group. The hyperuricemic rat model was induced by yeast gavage at 15 g/kg and potassium oxonate intraperitoneal injection at 600 mg/kg for two weeks. During the next two weeks, ShiZhiFang group rats were given ShiZhiFang by gavage, and benzbromarone group rats were given benzbromarone by gavage. The serum uric acid, creatinine, blood urea nitrogen, XOD activity, urinary uric acid, urinary β2-MG, and histopathological changes were observed in the rats of each group after treatment. Results The hyperuricemic model was established successfully and did not show the increase of serum creatinine and blood urea nitrogen. Compared with the model group, the serum uric acid, serum XOD activity, and urinary β2-MG were significantly decreased (p < 0.05), and 24 h urinary uric acid excretion was significantly decreased (p < 0.01) in ShiZhiFang group, whereas the two treatment groups were of no statistical significant in above indicators (p > 0.05); renal histopathology showed that the lesions in two treatment groups were reduced compared to the model groups. The gene and protein expression of uric acid anion transporters rOAT1 and rOAT3 in the kidney was significantly higher than that in model group (p < 0.01). Conclusion The model is suitable for the study of primary hyperuricemia. The mechanisms of ShiZhiFang on uric acid metabolism in hyperuricemic rats may be involved in reducing the activity of serum XOD and promoting the transcription and expression of rOAT1 and rOAT3 in the kidney.
Objective. Renal anemia in patients with end-stage chronic kidney disease is closely related to the deterioration of cardiac function, renal function, and quality of life. This study involved adenine-induced renal anemic rat models and evaluated the treatment effect of Siwu granules and/or erythropoietin (EPO). Methods. Fifty SD rats were randomly divided into 5 groups: control, model, Siwu, EPO, and Siwu plus EPO groups. The expression levels of NO, MDA, SOD, CAT, IL-6, TNF-α, EPO, EPOR, α-SMA, and TGF-β1 were detected in rats after 8 weeks of treatment with Siwu granules and/or EPO. Results. After modeling, 47 rats entered the stage of treatment. Siwu plus EPO treatment significantly increased the rat hemoglobin content (p<0.05) and reduced blood urea nitrogen (p<0.05) and serum creatinine (p<0.001). Compared with the control group, the expression of EPO and EPOR in the kidney of rats with renal failure was significantly decreased (p<0.05). Moreover, the Siwu plus EPO group improved the level of oxidative stress in rats with chronic renal failure and reduced the expression of inflammatory factors. The expression of α-SMA and TGF-β1 in rats with renal failure was higher, but there was no expression in the control group. Conclusion. Combined treatment of Siwu granules with EPO increased the expression of EPO and EPOR in the renal tissues and inhibited oxidative stress and inflammatory factors, improving the renal function and anemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.