-dose mTOR inhibition by rapamycin attenuates progression in anti-thy1-induced chronic glomerulosclerosis of the rat. Am J Physiol Renal Physiol 294: F440-F449, 2008. First published December 19, 2007 doi:10.1152/ajprenal.00379.2007.-Treatment options in human mesangioproliferative glomerulonephritis/sclerosis, mostly IgA nephropathy, are limited. Progressive mesangioproliferative nephropathy represents a major cause of end-stage kidney disease. The present study explores the efficacy of low-dose mTOR inhibition by rapamycin in a chronic-progressive model of mesangioproliferative glomerulosclerosis (cGS). cGS was induced by high-dose anti-thy1 antibody injection into uninephrectomized rats. Rapamycin administration (2.5 mg ⅐ kg Ϫ1 ⅐ body wt Ϫ1 ) was started 10 days after antibody injection and continued until week 20. cGS was characterized by advancing proteinuria, increased blood pressure, marked tubulointerstitial and glomerular fibrosis, cell proliferation and round cell infiltration, and impaired renal function. KruskalWallis and Mann-Whitney U-tests were used for statistical analysis. The course of chronic anti-thy1-induced glomerulosclerosis was significantly attenuated by low-dose rapamycin treatment. In week 20, this was demonstrated by improvements in proteinuria (Ϫ38%), systolic blood pressure (Ϫ16 mmHg), tubulointerstitial and glomerular histological matrix accumulation (Ϫ61 and Ϫ24%), transforming growth factor-1 overexpression (Ϫ41 and Ϫ47%), collagen I deposition (Ϫ53 and Ϫ65%), cell proliferation (Ϫ90 and Ϫ76%), and leukocyte number (macrophages Ϫ52 and Ϫ53%; lymphocytes Ϫ58 and 51%), respectively. Rapamycin improved renal function as well (blood creatinine Ϫ0.68 mg/dl, urea Ϫ66.7 mg/day, and creatinine clearance ϩ0.13 ml ⅐ min Ϫ1
FTY720 is a novel immune modulator whose primary action is blood lymphocyte depletion through interaction with sphingosine-1-phosphate (S1P) receptors. The present study analyzes the effect of FTY720 on both the early mesangial cell injury and the subsequent matrix expansion phase of experimental mesangioproliferative glomerulonephritis. Disease was induced by injection of OX-7 anti-thy1 antibody into male Wistar rats. In both protocols, FTY720 administration (0.3 mg/kg body wt) resulted in a selective and very marked reduction in blood lymphocyte count. In the injury experiment, the S1P receptor modulator was given starting 5 days before and continued until 1 day after antibody injection. FTY720 did not significantly affect the degree of anti-thy1-induced mesangial cell lysis and glomerular-inducible nitric oxide production. In the matrix expansion experiment, FTY720 treatment was started 1 day after antibody injection and continued until day 7. In this protocol, the S1P modulator reduced proteinuria, histological matrix expansion, and glomerular protein expression of TGF-beta(1), fibronectin, and PAI-1. Glomerular collagen III staining intensity was decreased. FTY720 reduced markedly glomerular lymphocyte number per cross section and to a lesser degree macrophage infiltration. In conclusion, FTY720 significantly limits TGF-beta(1) overexpression and matrix protein expression following induction of acute anti-thy glomerulonephritis, involving reductions in blood and glomerular lymphocyte numbers. The results suggest that lymphocytes actively contribute to matrix expansion in experimental mesangioproliferative glomerulonephritis. Our study expands on findings on FTY720's beneficial effects on tubulointerstitial and functional disease progression previously reported in anti-thy1-induced chronic glomerulosclerosis.
Nitric oxide (NO) produced by endothelial NO synthase (NOS) in low concentrations is a unique messenger molecule with key homeostatic functions concerning the prevention of pathological vascular and tissue changes such as increases in blood pressure, platelet degranulation, mononuclear cell infiltration, cell proliferation and extracellular matrix protein accumulation. This is in contrast to high levels of NO derived from inducible NOS which act as detrimental effector molecules and free radicals in immune response. Deficiency in NO's protective signaling actions is a major characteristic in numerous experimental and human disease situations. The main function of the NO signaling pathway is activation of the soluble guanylate cyclase (sGC) enzyme with subsequent generation of cyclic guanosine monophosphate (cGMP) as a second messenger and downstream mediator. In the past, attempts to overcome deficiency in endothelial NO effects were focused primarily on increasing the supply with the NO precursor L-arginine or on the use of directly NO-releasing compounds. The clinical impact of these strategies, however, was rather limited. Recent state-of-the-art studies have revealed that NO signaling is highly regulated at the transcriptional level and that deficiency in NO signaling correlates closely with pathological changes. In parallel efforts, novel pharmacological compounds which specifically enhance NO/cGMP signaling have been developed and have demonstrated remarkable efficacy in experimental disease settings. In this review, we summarize the current state of knowledge on the impairment of NO/cGMP signaling and about its pharmacological stimulation. In the first part, experimental renal fibrosis, i.e. the tandem rat model of acute anti-thy1 glomerulonephritis and progressive anti-thy1 renal fibrosis will serve as a paradigm for introducing this new and exciting field. In the second part, we will address the most recent findings on NO signaling in non-renal diseases. Together, these results point out that deficiency in NO/cGMP is a common key pathway as well as a novel therapeutic target in a number of diseases.
is additive to high-dose candesartan in slowing progression of experimental mesangioproliferative glomerulosclerosis.
The lymphocyte migration inhibitor FTY720 attenuates experimental hypertensive nephropathy. Infiltration with lymphocytes is found in both immune and nonimmune chronic kidney diseases. In a rat model of immune-initiated progressive glomerulosclerosis, selective inhibition of lymphocyte infiltration by FTY720 showed significant beneficial effects on renal fibrosis. To test whether this translates into hypertensive nephropathy (HN), the lymphocyte migration inhibitor was administered to rats following 5 ⁄6 nephrectomy. Two days after surgery, male Wistar rats were allocated to the following groups: Sham surgery, 5 ⁄6 nephrectomy (HN), and HN ϩ FTY720 (0.3 mg/kg body wt). Therapy was continued for 6 wk. Treatment with FTY720 was found to selectively reduce blood lymphocyte counts by 85% (P Ͻ 0.001 vs. HN) and renal lymphocyte infiltration (CD-3 positive cells) by 63% (P Ͻ 0.01 vs. HN) as was anticipated. Lymphocyte depletion went along with a significant reduction in proteinuria (Ϫ28%), whereas hypertensive systemic blood pressure remained unchanged (160 Ϯ 5 vs. 161 Ϯ 5 mmHg, P ϭ not significant). The markedly increased histological tubulointerstitial and glomerular matrix protein accumulation, collagen, laminin, and fibronectin deposition were all significantly impeded in the FTY720-treated animals. The anti-fibrotic effects of FTY720 were paralleled by significant reductions in renal transforming growth factor (TGF)- overexpression, macrophage infiltration, and cell proliferation. In conclusion, the lymphocyte migration inhibitor FTY720 significantly limits histological and molecular fibrosis in a model of hypertensive nephropathy without affecting increased systemic blood pressure. Prevention of renal lymphocytes' infiltration by FTY720 was followed by significant reductions in TGF- overexpression, macrophage infiltration, and renal cell proliferation. These results suggest that infiltrating lymphocytes play an active, profibrotic role in the progression of hypertensive renal tissue injury. sphingosine 1-phosphate; transforming growth factor-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.