The carboxysome is a bacterial organelle that functions to enhance the efficiency of CO2 fixation by encapsulating the enzymes ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. The outer shell of the carboxysome is reminiscent of a viral capsid, being constructed from many copies of a few small proteins. Here we describe the structure of the shell protein CsoS1A from the chemoautotrophic bacterium Halothiobacillus neapolitanus. The CsoS1A protein forms hexameric units that pack tightly together to form a molecular layer, which is perforated by narrow pores. Sulfate ions, soaked into crystals of CsoS1A, are observed in the pores of the molecular layer, supporting the idea that the pores could be the conduit for negatively charged metabolites such as bicarbonate, which must cross the shell. The problem of diffusion across a semiporous protein shell is discussed, with the conclusion that the shell is sufficiently porous to allow adequate transport of small molecules. The molecular layer formed by CsoS1A is similar to the recently observed layers formed by cyanobacterial carboxysome shell proteins. This similarity supports the argument that the layers observed represent the natural structure of the facets of the carboxysome shell. Insights into carboxysome function are provided by comparisons of the carboxysome shell to viral capsids, and a comparison of its pores to the pores of transmembrane protein channels.
The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiationsensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β 2 -adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.femtosecond diffraction | crystallography | XFEL | structural biology U sing extremely bright, short-timescale X-ray pulses produced by X-ray free-electron lasers (XFELs), femtosecond crystallography (FX) is an emerging method that expands the structural information accessible from very small or very radiation-sensitive macromolecular crystals. Central to this method is the "diffraction before destruction" (1) process in which a still diffraction image is produced by a single X-ray pulse before significant radiation-induced electronic and atomic rearrangements occur within the crystal (1-3). At the Linac Coherent Light Source (LCLS) at SLAC, a single ∼50-fs-long X-ray pulse can expose a crystal to as many X-ray photons as a typical synchrotron beam line produces in about a second. Exposing small crystals to these intense ultrashort pulses circumvents the dose limitations of conventional X-ray diffraction experiments (4) and may produce useful data to resolutions beyond what is achievable at synchrotrons (5). This innovation provides a pathway to obtain atomic information from proteins that only form micrometer-to nanometer-sized crystals, such as many membrane proteins and large multiprotein complexes. Moreover, XFELs enable "diffraction before reduction" data collection to address another major challenge in structural enzymology by providing a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzyme active sites (6), such as high-valency reaction intermediates that may be significantly photoreduced during a single X-ray exposure at a synchrotron, even at very small doses (7-11). Furthermore, the use of short (tens of femtoseconds) X-ray pulses further complements the structural characterization of biochemical reaction processes by providing access to a time domain two to three orders of magnitude faster (12, 13) than currently accessible using synchrotro...
SUMMARY X-Ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of micro-plates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples.
Although the cation-pi pair, formed between a side chain or substrate cation and the negative electrostatic potential of a pi system on the face of an aromatic ring, has been widely discussed and has been shown to be important in protein structure and protein-ligand interactions, there has been little discussion of the potential structural and functional importance in proteins of the related anion-aromatic pair (i.e., interaction of a negatively charged group with the positive electrostatic potential on the ring edge of an aromatic group). We posited, based on prior structural information, that anion-aromatic interactions between the anionic Asp general base and Phe54 and Phe116 might be used instead of a hydrogen-bond network to position the general base in the active site of ketosteroid isomerase from Comamonas testosteroni as there are no neighboring hydrogenbonding groups. We have tested the role of the Phe residues using site-directed mutagenesis, double-mutant cycles, and high-resolution X-ray crystallography. These results indicate a catalytic role of these Phe residues. Extensive analysis of the Protein Data Bank provides strong support for a catalytic role of these and other Phe residues in providing anion-aromatic interactions that position anionic general bases within enzyme active sites. Our results further reveal a potential selective advantage of Phe in certain situations, relative to more traditional hydrogen-bonding groups, because it can simultaneously aid in the binding of hydrophobic substrates and positioning of a neighboring general base.enzyme catalysis | general-base catalysis | noncovalent interactions E nzymes use the same functional groups to achieve "chemical catalysis" as small-molecule catalysts, and yet enzymes attain much greater rate enhancements. A distinguishing feature of enzymes is that their reactions occur in highly specialized active sites that use noncovalent interactions to precisely position enzymatic functional groups relative to substrates and relative to other active-site features. Understanding how these groups are positioned within enzyme active sites is key for understanding the differences between enzymes and small-molecule catalysts.It is generally recognized that hydrophobic interactions can help bind and position substrates in enzyme active sites (1, 2). Beyond hydrophobic interactions, much attention has focused on the importance of hydrogen bonds in precisely positioning active-site groups directly involved in the chemical reaction (e.g., the catalytic triad in serine proteases), and the importance of hydrogen-bonding groups is supported by mutagenesis in many cases (e.g., refs. 1 and 3-5).In addition to hydrogen bonds, the cation-pi pair, formed between a side-chain or substrate cation and the negative electrostatic potential associated with the face of a pi system, has been widely discussed in hundreds of literature reports and has been shown to be important in both protein structure and proteinligand interactions (e.g., refs. 6 and 7). There has been much ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.