Interactive recommender systems that enable the interactions between users and the recommender system have attracted increasing research attention. Previous methods mainly focus on optimizing recommendation accuracy. However, they usually ignore the diversity of the recommendation results, thus usually results in unsatisfying user experiences. In this paper, we propose a novel diversified recommendation model, named Diversified Contextual Combinatorial Bandit (DC2B), for interactive recommendation with users' implicit feedback. Specifically, DC2B employs determinantal point process in the recommendation procedure to promote diversity of the recommendation results. To learn the model parameters, a Thompson sampling-type algorithm based on variational Bayesian inference is proposed. In addition, theoretical regret analysis is also provided to guarantee the performance of DC2B. Extensive experiments on real datasets are performed to demonstrate the effectiveness of the proposed method in balancing the recommendation accuracy and diversity.
In practice, differentially private data releases are designed to support a variety of applications. A data release is fit for use if it meets target accuracy requirements for each application. In this paper, we consider the problem of answering linear queries under differential privacy subject to per-query accuracy constraints. Existing practical frameworks like the matrix mechanism do not provide such fine-grained control (they optimize total error, which allows some query answers to be more accurate than necessary, at the expense of other queries that become no longer useful). Thus, we design a fitness-for-use strategy that adds privacy-preserving Gaussian noise to query answers. The covariance structure of the noise is optimized to meet the fine-grained accuracy requirements while minimizing the cost to privacy.
Differential privacy has become a de facto standard for releasing data in a privacy-preserving way. Creating a differentially private algorithm is a process that often starts with a noise-free (nonprivate) algorithm. The designer then decides where to add noise, and how much of it to add. This can be a non-trivial process -if not done carefully, the algorithm might either violate differential privacy or have low utility.In this paper, we present DPGen, a program synthesizer that takes in non-private code (without any noise) and automatically synthesizes its differentially private version (with carefully calibrated noise). Under the hood, DPGen uses novel algorithms to automatically generate a sketch program with candidate locations for noise, and then optimize privacy proof and noise scales simultaneously on the sketch program. Moreover, DPGen can synthesize sophisticated mechanisms that adaptively process queries until a specified privacy budget is exhausted. When evaluated on standard benchmarks, DPGen is able to generate differentially private mechanisms that optimize simple utility functions within 120 seconds. It is also powerful enough to synthesize adaptive privacy mechanisms. CCS CONCEPTS• Security and privacy → Logic and verification; • Theory of computation → Program analysis.
In practice, differentially private data releases are designed to support a variety of applications. A data release is fit for use if it meets target accuracy requirements for each application. In this paper, we consider the problem of answering linear queries under differential privacy subject to per-query accuracy constraints. Existing practical frameworks like the matrix mechanism do not provide such fine-grained control (they optimize total error, which allows some query answers to be more accurate than necessary, at the expense of other queries that become no longer useful). Thus, we design a fitness-for-use strategy that adds privacy-preserving Gaussian noise to query answers. The covariance structure of the noise is optimized to meet the fine-grained accuracy requirements while minimizing the cost to privacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.