The MYC and RAS oncogenes are frequently activated in cancer and, together, are sufficient to transform rodent cells. The basis for this cooperativity remains unclear. We found that although Ras interfered with Myc-induced apoptosis, Myc repressed Ras-induced senescence, together abrogating two main barriers of tumorigenesis. Inhibition of cellular senescence required phosphorylation of Myc at Ser-62 by cyclin E/cyclin-dependent kinase (Cdk) 2. Cdk2 interacted with Myc at promoters, where it affected Myc-dependent regulation of genes, including Bmi-1, p16, p21, and hTERT, which encode proteins known to control senescence. Repression of senescence by Myc was abrogated by the Cdk inhibitor p27Kip1, which is induced by antiproliferative signals like IFN-γ or by pharmacological inhibitors of Cdk2 but not by inhibitors of other Cdks. In contrast, a phospho-mimicking Myc-S62D mutant was resistant to these manipulations. Inhibition of cyclin E/Cdk2 reversed the senescence-associated gene expression pattern imposed by Myc/cyclin E/Cdk2. This indicates a role of Cdk2 as a transcriptional cofactor and activator of the antisenescence function of Myc and provides mechanistic insight into the Myc-p27Kip1 antagonism. Finally, our findings highlight that pharmacological inhibition of Cdk2 activity is a potential therapeutical principle for cancer therapy, in particular for tumors with activated Myc or Ras.oncogenes | transcription | cell cycle | p27Kip1 | cyclin E
The MYCN protooncogene is involved in the control of cell proliferation, differentiation, and survival of neuroblasts. Deregulation of MYCN by gene amplification contributes to neuroblastoma development and is strongly correlated to advanced disease and poor outcome, emphasizing the urge for new therapeutic strategies targeting MYCN function. The transcription factor N-Myc, encoded by MYCN, regulates numerous genes together with its partner Max, which also functions as a cofactor for the Mad/Mnt family of Myc antagonists/transcriptional repressors. We and others have previously reported that IFN-; synergistically potentiates retinoic acid (RA) -induced sympathetic differentiation and growth inhibition in neuroblastoma cells. This study shows that combined treatment of MYCN-amplified neuroblastoma cells with RA+IFN-; down-regulates N-Myc protein expression through increased protein turnover, up-regulates Mad1 mRNA and protein, and reduces N-Myc/Max heterodimerization. This results in a shift of occupancy at the ornithine decarboxylase N-Myc/Mad1 target promoter in vivo from N-Myc/Max to Mad1/Max predominance, correlating with histone H4 deacetylation, indicative of a chromatin structure typical of a transcriptionally repressed state. This is further supported by data showing that RA+IFN-; treatment strongly represses expression of N-Myc/Mad1 target genes ornithine decarboxylase and hTERT. Our results suggest that combined IFN-; and RA signaling can form a basis for new therapeutic strategies targeting N-Myc function for patients with high-risk, MYCN-amplified neuroblastoma. [Mol Cancer Ther 2007;6(10):2634 -41]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.