To improve the user experience, an increasing number of mobile applications offload their computing tasks to servers with powerful computing capabilities. The fog radio access network (F-RAN) incorporates the concept of "fog computing" into the access network architecture, endowing an edge network with computing, storage, communication and control functions. In this paper, we consider a multiple fog access point (F-AP) and a multiuser F-RAN, where each user generates two different tasks: communication and computation. To satisfy the diverse quality of service requirements of different users, we jointly optimize the spectrum access, computation offloading and radio resource allocation. The problem is modeled as a mixed integer nonlinear programming problem, which is difficult to solve. In view of this, we propose a genetic algorithm based on convex optimization, i.e., the genetic convex optimization algorithm (GCOA), which divides the mixed integer nonlinear programming problem into two parts, i.e., optimization and convex optimization, to solve it in polynomial time. Simulation results are provided to verify the effectiveness of the algorithm.
The heterogeneous cloud radio access network (H-CRAN) is considered a promising solution to expand the coverage and capacity required by fifth-generation (5G) networks. UAV, also known as wireless aerial platforms, can be employed to improve both the network coverage and capacity. In this paper, we integrate small drone cells into a H-CRAN. However, new complications and challenges, including 3D drone deployment, user association, admission control, and power allocation, emerge. In order to address these issues, we formulate the problem by maximizing the network throughput through jointly optimizing UAV 3D positions, user association, admission control, and power allocation in H-CRAN networks. However, the formulated problem is a mixed integer nonlinear problem (MINLP), which is NP-hard. In this regard, we propose an algorithm that combines the genetic convex optimization algorithm (GCOA) and particle swarm optimization (PSO) approach to obtain an accurate solution. Simulation results validate the feasibility of our proposed algorithm, and it outperforms the traditional genetic and K-means algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.