In this paper, we propose a system that can automatically generate immersive and interactive virtual reality (VR) scenes by taking real-world geometric constraints into account. Our system can not only help users avoid real-world obstacles in virtual reality experiences, but also provide context-consistent contents to preserve their sense of presence. To do so, our system first identifies the positions and bounding boxes of scene objects as well as a set of interactive planes from 3D scans. Then context-consistent virtual objects that have similar geometric properties to the real ones can be automatically selected and placed into the virtual scene, based on learned object association relations and layout patterns from large amounts of indoor scene configurations. We regard virtual object replacement as a combinatorial optimization problem, considering both geometric and contextual consistency constraints. Quantitative and qualitative results show that our system can generate plausible interactive virtual scenes that highly resemble real environments, and have the ability to keep the sense of presence for users in their VR experiences.
Is the center position fully capable of representing a pixel? There is nothing wrong to represent pixels with their centers in a discrete image representation, but it makes more sense to consider each pixel as the aggregation of signals from a local area in an image super-resolution (SR) context. Despite the great capability of coordinate-based implicit representation in the field of arbitrary-scale image SR, this area's nature of pixels is not fully considered. To this end, we propose integrated positional encoding (IPE), extending traditional positional encoding by aggregating frequency information over the pixel area. We apply IPE to the state-of-the-art arbitrary-scale image super-resolution method: local implicit image function (LIIF), presenting IPE-LIIF. We show the effectiveness of IPE-LIIF by quantitative and qualitative evaluations, and further demonstrate the generalization ability of IPE to larger image scales and multiple implicit-based methods. Code will be released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.