Graph Neural Networks (GNNs) have been widely applied to fraud detection problems in recent years, revealing the suspiciousness of nodes by aggregating their neighborhood information via different relations. However, few prior works have noticed the camouflage behavior of fraudsters, which could hamper the performance of GNNbased fraud detectors during the aggregation process. In this paper, we introduce two types of camouflages based on recent empirical studies, i.e., the feature camouflage and the relation camouflage. Existing GNNs have not addressed these two camouflages, which results in their poor performance in fraud detection problems. Alternatively, we propose a new model named CAmouflage-REsistant GNN (CARE-GNN), to enhance the GNN aggregation process with three unique modules against camouflages. Concretely, we first devise a label-aware similarity measure to find informative neighboring nodes. Then, we leverage reinforcement learning (RL) to find the optimal amounts of neighbors to be selected. Finally, the selected neighbors across different relations are aggregated together. Comprehensive experiments on two real-world fraud datasets demonstrate the effectiveness of the RL algorithm. The proposed CARE-GNN also outperforms state-of-the-art GNNs and GNN-based fraud detectors. We integrate all GNN-based fraud detectors as an opensource toolbox 1. The CARE-GNN code and datasets are available at https://github.com/YingtongDou/CARE-GNN. CCS CONCEPTS • Security and privacy → Web application security; • Computing methodologies → Neural networks.
Graph-based models have been widely used to fraud detection tasks. Owing to the development of Graph Neural Networks (GNNs), recent works have proposed many GNN-based fraud detectors, which are based on either homogeneous or heterogeneous graphs. These works design some GNNs, aggregating neighborhood information to learn the node embeddings. The aggregation relies on the assumption that neighbors share similar context, features, and relations. However, the inconsistency problem incurred by fraudsters is hardly investigated, i.e., the context inconsistency, feature inconsistency, and relation inconsistency. In this paper, we introduce these inconsistencies and design a new GNN framework, GraphConsis, to tackle the inconsistency problem: (1) for the context inconsistency, we propose to combine the context embeddings with node features; (2) for the feature inconsistency, we design a consistency score to filter the inconsistent neighbors and generate corresponding sampling probability; (3) for the relation inconsistency, we learn the relation attention weights associated with the sampled nodes. Empirical analyses demonstrate that the inconsistency problem is critical in fraud detection tasks. Extensive experiments show the effectiveness of GraphConsis. We also released a GNN-based fraud detection toolbox with implementations of SOTA models. The code is available at https://github.com/safe-graph/DGFraud. CCS CONCEPTS• Security and privacy → Web application security; • Computing methodologies → Neural networks.
Deep neural networks (DNNs) have been widely applied in various applications involving image, text, audio, and graph data. However, recent studies have shown that DNNs are vulnerable to adversarial attack. Though there are several works studying adversarial attack and defense on domains such as images and text processing, it is difficult to directly transfer the learned knowledge to graph data due to its representation challenge. Given the importance of graph analysis, increasing number of works start to analyze the robustness of machine learning models on graph. Nevertheless, current studies considering adversarial behaviors on graph data usually focus on specific types of attacks with certain assumptions. In addition, each work proposes its own mathematical formulation which makes the comparison among different methods difficult. Therefore, in this paper, we aim to survey existing adversarial attack strategies on graph data and provide an unified problem formulation which can cover all current adversarial learning studies on graph. We also compare different attacks on graph data and discuss their corresponding contributions and limitations. Finally, we discuss several future research directions in this area.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.