To perform air missions with an unmanned aerial vehicle (UAV) swarm is a significant trend in warfare. The task assignment among the UAV swarm is one of the key issues in such missions. This paper proposes PSO-GA-DWPA (discrete wolf pack algorithm with the principles of particle swarm optimization and genetic algorithm) to solve the task assignment of a UAV swarm with fast convergence speed. The PSO-GA-DWPA is confirmed with three different ground-attack scenarios by experiments. The comparative results show that the improved algorithm not only converges faster than the original WPA and PSO, but it also exhibits excellent search quality in high-dimensional space.
The effectiveness of the Wolf Pack Algorithm (WPA) in high-dimensional discrete optimization problems has been verified in previous studies; however, it usually takes too long to obtain the best solution. This paper proposes the Multi-Population Parallel Wolf Pack Algorithm (MPPWPA), in which the size of the wolf population is reduced by dividing the population into multiple sub-populations that optimize independently at the same time. Using the approximate average division method, the population is divided into multiple equal mass sub-populations whose better individuals constitute an elite sub-population. Through the elite-mass population distribution, those better individuals are optimized twice by the elite sub-population and mass sub-populations, which can accelerate the convergence. In order to maintain the population diversity, population pretreatment is proposed. The sub-populations migrate according to a constant migration probability and the migration of sub-populations are equivalent to the re-division of the confluent population. Finally, the proposed algorithm is carried out in a synchronous parallel system. Through the simulation experiments on the task assignment of the UAV swarm in three scenarios whose dimensions of solution space are 8, 30 and 150, the MPPWPA is verified as being effective in improving the optimization performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.