<abstract> <p>The resting HR is an upward trend with the development of chronic obstructive pulmonary disease (COPD) severity. Chest computed tomography (CT) has been regarded as the most effective modality for characterizing and quantifying COPD. Therefore, CT images should provide more information to analyze the lung and heart relationship. The relationship between HR variability and PFT or/and COPD has been fully revealed, but the relationship between resting HR variability and COPD radiomics features remains unclear. 231 sets of chest high-resolution CT (HRCT) images from "COPD patients" (at risk of COPD and stage I to IV) are segmented by the trained lung region segmentation model (ResU-Net). Based on the chest HRCT images and lung segmentation images, 231 sets of the original lung parenchyma images are obtained. 1316 COPD radiomics features of each subject are calculated by the original lung parenchyma images and its derived lung parenchyma images. The 13 selected COPD radiomics features related to the resting HR are generated from the Lasso model. A COPD radiomics features combination strategy is proposed to satisfy the significant change of the lung radiomics feature among the different COPD stages. Results show no significance between COPD stage Ⅰ and COPD stage Ⅱ of the 13 selected COPD radiomics features, and the lung radiomics feature Y1-Y4 (P > 0.05). The lung radiomics feature F2 with the dominant selected COPD radiomics features based on the proposed COPD radiomics features combination significantly increases with the development of COPD stages (P < 0.05). It is concluded that the lung radiomics feature F2 with the dominant selected COPD radiomics features not only can characterize the resting HR but also can characterize the COPD stage evolution.</p> </abstract>
<abstract> <p>Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).</p> </abstract>
Chronic obstructive pulmonary disease (COPD) is a preventable, treatable, progressive chronic disease characterized by persistent airflow limitation. Patients with COPD deserve special consideration regarding treatment in this fragile population for preclinical health management. Therefore, this paper proposes a novel lung radiomics combination vector generated by a generalized linear model (GLM) and Lasso algorithm for COPD stage classification based on an auto-metric graph neural network (AMGNN) with a meta-learning strategy. Firstly, the parenchyma images were segmented from chest high-resolution computed tomography (HRCT) images by ResU-Net. Second, lung radiomics features are extracted from the parenchyma images by PyRadiomics. Third, a novel lung radiomics combination vector (3 + 106) is constructed by the GLM and Lasso algorithm for determining the radiomics risk factors (K = 3) and radiomics node features (d = 106). Last, the COPD stage is classified based on the AMGNN. The results show that compared with the convolutional neural networks and machine learning models, the AMGNN based on constructed novel lung radiomics combination vector performs best, achieving an accuracy of 0.943, precision of 0.946, recall of 0.943, F1-score of 0.943, and ACU of 0.984. Furthermore, it is found that our method is effective for COPD stage classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.