The high-quality development of regional economic system is inseparable from the collective efforts of multiple economic sectors. Increasing attention has been paid to the environmental performance evaluation of different administrative levels or economic sectors, but integrated research is scarce. Taking the three industries (the primary, secondary and tertiary industries) into account, this paper proposes a data envelopment analysis (DEA) model with parallel network structure to assess the environmental performance of 30 provinces in China from integrative perspective of efficiency and productivity. Then, the Tobit model is adopted to investigate the effects of external factors on the environmental performance. The results show that environmental efficiency of Chinese economy is only 0.4436 during 2010–2019 and the performance of the secondary industry is the highest, followed by the tertiary and the primary industries. Moreover, the environmental efficiency of eastern region is far higher than that of the central or western regions. Technological progress is the main driver of environmental productivity improvement for China’s economic system. Most of the external factors such as energy structure and technology innovation, have different effects on the environmental performance of different regions. Finally, several targeted policy implications are suggested for improving the environmental performance of China’s economic system.
With the deepening of industrialization and urbanization in China, air pollution has become the most serious environmental issue due to huge energy consumption, which threatens the health of residents and the sustainable development of the country. Increasing attention has been paid to the efficiency evaluation of industrial system due to its fast development and severe air pollution emissions, but the efficiency evaluation on China’s industrial waste gas still has scope for improvement. This paper proposes a global non-radial Network Data Envelopment Analysis (NDEA) model from the perspective of pollution prevention (PP) and end-of-pipe treatment (ET), to explore the potential reduction of generation and emission of air pollutants in China’s industrial system. Given the differences of different air pollution treatment capacities, the ET stage is further subdivided into three parallel sub-stages, corresponding to SO2, NOX, and soot and dust (SD), respectively. Then, grey relation analysis (GRA) is adopted to figure out the key factor affecting the unified efficiency. The main findings are summarized as follows: firstly, the unified efficiency of China’s industrial waste gas underperformed nationwide, and most provinces had the potential to reduce the generation and emission of industrial waste gas. Secondly, the PP efficiency outperformed the ET efficiency in many provinces and the efficiency gap between two stages increasingly narrowed except in 2014. Thirdly, the unified efficiency in the eastern area performed well, while the area disparities increased significantly after 2012. Fourthly, significant differences were found in three ET efficiencies and the ET efficiency of NOX was higher than that of SO2 and SD in the sample period. Finally, the results of GRA indicated that different air pollutants had distinct influence on the improvement of the unified efficiency in three areas. To promote the unified efficiency of industrial waste gas, some pertinent policy suggestions are put forward from the perspectives of sub-stages, air pollutants and areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.