Native cellulose has a highly crystalline structure stabilized by a strong intra- and intermolecular hydrogen-bond network. It is usually not considered as a good gelling material and emulsion stabilizer due to its insolubility in water. Chemical modification is generally necessary to obtain cellulose derivatives for these applications. In this study, we have shown that, by simply disrupting the hydrogen-bond network of cellulose with phosphoric acid treatment, the regenerated cellulose can be a good gelling material and emulsion stabilizer. Microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analysis have confirmed that the regenerated cellulose is primarily amorphous with low crystallinity in the structure of cellulose II. Stable aqueous suspensions and opaque gels that resist flowing can be obtained with the regenerated cellulose at concentrations higher than 0.6% and 1.6%, respectively. Moreover, it can effectively stabilize oil-in-water emulsions at concentrations less than 1% by a mechanism that combines network and Pickering stabilization.
Abstract. The Nonhydrostatic ICosahedral Atmospheric Model
(NICAM), a global model with an icosahedral grid system, has been under
development for nearly two decades. This paper describes NICAM16-S, the
latest stable version of NICAM (NICAM.16), modified for the Coupled Model
Intercomparison Project Phase 6, High Resolution Model Intercomparison
Project (HighResMIP). Major updates of NICAM.12, a previous version used
for climate simulations, included updates of the cloud microphysics scheme
and land surface model, introduction of natural and anthropogenic aerosols
and a subgrid-scale orographic gravity wave drag scheme, and improvement of
the coupling between the cloud microphysics and the radiation schemes.
External forcings were updated to follow the protocol of the HighResMIP. A
series of short-term sensitivity experiments were performed to determine and
understand the impacts of these various model updates on the simulated mean
states. The NICAM16-S simulations demonstrated improvements in the ice water
content, high cloud amount, surface air temperature over the Arctic region,
location and strength of zonal mean subtropical jet, and shortwave radiation
over Africa and South Asia. Some long-standing biases, such as the double
intertropical convergence zone and smaller low cloud amount, still exist or
are even worse in some cases, suggesting further necessity for understanding
their mechanisms, upgrading schemes and parameter settings, and
enhancing horizontal and vertical resolutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.