Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19-121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.
Very little is known about the physiological interactions between plants and endophytic bacteria. We investigated the impact of three endophytic bacteria, Bacillus pumilus 2-1, Chryseobacterium indologene 2-2, and Acinetobacter johnsonii 3-1, on the photosynthetic capacity and growth of sugar beet. Endophyte-free plants were obtained first and infected with the bacteria. Measurements of total chlorophyll content revealed very significant differences between endophyte-free beet plants and some infected by endophytic bacteria. The maximum photochemical yield (Fv/Fm) was used to determine any photosynthetic effect on plants caused by biotic or abiotic factors. After 30 days of growth, there was significantly higher Fv/Fm for endophyte-infected than endophyte-free plants. The light response curves of beet showed that photosynthetic capacity was significantly increased in endophyte-infected plants. Photosynthesis of endophyte-free plants was saturated at 1,300 micromol m(-2) s(-1), whereas endophyte-infected plants were not saturated at the irradiance used. The effect seemed to be due to promotion of electron transport in the thylakoid membranes. Promotion of photosynthetic capacity in sugar beet was due to increased chlorophyll content, leading to a consequent increased carbohydrate synthesis. It is possible that the increased maximum yield of photosynthesis in sugar beet was promoted by phytohormones and produced by the bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.