The gut microbiota plays an important role in the regulation of the immune system and the metabolism of the host. The aim of the present study was to characterize the gut microbiota of patients with type 2 diabetes mellitus (T2DM). A total of 118 participants with newly diagnosed T2DM and 89 control subjects were recruited in the present study; six clinical parameters were collected and the quantity of 10 different types of bacteria was assessed in the fecal samples using quantitative PCR. Taking into consideration the six clinical variables and the quantity of the 10 different bacteria, 3 predictive models were established in the training set and test set, and evaluated using a confusion matrix, area under the receiver operating characteristic curve (AUC) values, sensitivity (recall), specificity, accuracy, positive predictive value and negative predictive value (npv). The abundance of Bacteroides, Eubacterium rectale and Roseburia inulinivorans was significantly lower in the T2DM group compared with the control group. However, the abundance of Enterococcus was significantly higher in the T2DM group compared with the control group. In addition, Faecalibacterium prausnitzii, Enterococcus and Roseburia inulinivorans were significantly associated with sex status while Bacteroides, Bifidobacterium, Enterococcus and Roseburia inulinivorans were significantly associated with older age. In the training set, among the three models, support vector machine (SVM) and XGboost models obtained AUC values of 0.72 and 0.70, respectively. In the test set, only SVM obtained an AUC value of 0.77, and the precision and specificity were both above 0.77, whereas the accuracy, recall and npv were above 0.60. Furthermore, Bifidobacterium, age and Roseburia inulinivorans played pivotal roles in the model. In conclusion, the SVM model exhibited the highest overall predictive power, thus the combined use of machine learning tools with gut microbiome profiling may be a promising approach for improving early prediction of T2DM in the near feature.
BackgroundHashimoto’s thyroiditis (HT) frequently occurs among autoimmune diseases and may simultaneously appear with thyroid cancer. However, it is difficult to diagnose HT at an early stage just by clinical symptoms. Thus, it is urgent to integrate multiple clinical and laboratory factors for the early diagnosis and risk prediction of HT.MethodsWe recruited 1,303 participants, including 866 non-HT controls and 437 diagnosed HT patients. 44 HT patients also had thyroid cancer. Firstly, we compared the difference in thyroid goiter degrees between controls and patients. Secondly, we collected 15 factors and analyzed their significant differences between controls and HT patients, including age, body mass index, gender, history of diabetes, degrees of thyroid goiter, UIC, 25-(OH)D, FT3, FT4, TSH, TAG, TC, FPG, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Thirdly, logistic regression analysis demonstrated the risk factors for HT. For machine learning modeling of HT and thyroid cancer, we conducted the establishment and evaluation of six models in training and test sets.ResultsThe degrees of thyroid goiter were significantly different among controls, HT patients without cancer (HT-C), and HT patients with thyroid cancer (HT+C). Most factors had significant differences between controls and patients. Logistic regression analysis confirmed diabetes, UIC, FT3, and TSH as important risk factors for HT. The AUC scores of XGBoost, LR, SVM, and MLP models indicated appropriate predictive power for HT. The features were arranged by their importance, among which, 25-(OH)D, FT4, and TSH were the top three high-ranking factors.ConclusionsWe firstly analyzed comprehensive factors of HT patients. The proposed machine learning modeling, combined with multiple factors, are efficient for thyroid diagnosis. These discoveries will extensively promote precise diagnosis, personalized therapies, and reduce unnecessary cost for thyroid diseases.
Aim To investigate the relationship of small dense low-density lipoprotein cholesterol (sdLDL-C) to carotid artery intima-media thickness (CA-IMT) and carotid plaque (CAP) in Chinese general population, and to evaluate whether sdLDL-C could be an independent risk factor for individuals with subclinical atherosclerosis. Methods A total of 729 subjects were randomly collected from consecutive individuals from April 2019 to April 2020 for an annual health checkup. CA-IMT > 1.0 mm was defined as abnormal IMT. Plaque stability was measured by ultrasound examination based on the property of the echo. And sdLDL-C levels were detected by LipoPrint system. Multivariate logistic regression analysis was performed to identify factors associated with CA-IMT and carotid plaque. Results The abnormal IMT group had significantly higher sdLDL-C levels than control group (p < 0.0001). And sdLDL-C levels were significantly positively correlated with IMT value (r = 0.1396, p = 0.0021) and presence of carotid plaque (r = 0.14, p = 0.002) in the subjects with abnormal IMT. In addition, subjects with higher levels of sdLDL-C (r = 0.11, p = 0.035) tended to have unstable CAP. After adjustment for age, gender and blood glucose, sdLDL-C level was an independent risk factor of the presence of CAP (OR = 1.59, 95% CI: 1.02–1.83, p = 0.034) in subjects with abnormal IMT. Conclusion SdLDL-C is an independent risk factor of the occurrence of CAP in the Chinese subjects with abnormal IMT. Our findings provide supporting evidence that sdLDL-C might be an alternative way to predict CVD in early stage.
Background Endocannabinoid anandamide (AEA), progesterone (P4) and β-human chorionic gonadotrophin (β-hCG) are associated with the threatened miscarriage in the early stage. However, no study has investigated whether combing these three hormones could predict threatened miscarriage. Thus, we aim to establish machine learning models utilizing these three hormones to predict threatened miscarriage risk. Methods This is a multicentre, observational, case-control study involving 215 pregnant women. We recruited 119 normal pregnant women and 96 threatened miscarriage pregnant women including 58 women with ongoing pregnancy and 38 women with inevitable miscarriage. P4 and β-hCG levels were detected by chemiluminescence immunoassay assay. The level of AEA was tested by ultra-high-performance liquid chromatography-tandem mass spectrometry. Six predictive machine learning models were established and evaluated by the confusion matrix, area under the receiver operating characteristic (ROC) curve (AUC), accuracy and precision. Results The median concentration of AEA was significantly lower in the healthy pregnant women group than that in the threatened miscarriage group, while the median concentration of P4 was significantly higher in the normal pregnancy group than that in the threatened miscarriage group. Only the median level of P4 was significantly lower in the inevitable miscarriage group than that in the ongoing pregnancy group. Moreover, AEA is strongly positively correlated with threatened miscarriage, while P4 is negatively correlated with both threatened miscarriage and inevitable miscarriage. Interestingly, AEA and P4 are negatively correlated with each other. Among six models, logistic regression (LR), support vector machine (SVM) and multilayer perceptron (MLP) models obtained the AUC values of 0.75, 0.70 and 0.70, respectively; and their accuracy and precision were all above 0.60. Among these three models, the LR model showed the highest accuracy (0.65) and precision (0.70) to predict threatened miscarriage. Conclusions The LR model showed the highest overall predictive power, thus machine learning combined with the level of AEA, P4 and β-hCG might be a new approach to predict the threatened miscarriage risk in the near feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.