Curcumin (Cur), a well-known dietary pigment derived from Curcuma longa, is a promising anticancer drug, but its in vivo target molecules remain to be clarified. Here we report that exposure of human hepatoma cells to Cur led to a significant decrease of histone acetylation. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) are the enzymes controlling the state of histone acetylation in vivo. Cur treatment resulted in a comparable inhibition of histone acetylation in the absence or presence of trichostatin A (the specific HDAC inhibitor), and showed no effect on the in vitro activity of HDAC. In contrast, the domain negative of p300 (a most potent HAT protein) could block the inhibition of Cur on histone acetylation; and the Cur treatment significantly inhibited the HAT activity both in vivo and in vitro. Thus, it is HAT, but not HDAC that is involved in Cur-induced histone hypoacetylation. At the same time, exposure of cells to low or high concentrations of Cur diminished or enhanced the ROS generation, respectively. And the promotion of ROS was obviously involved in Cur-induced histone hypoacetylation, since Cur-caused histone acetylation and HAT activity decrease could be markedly diminished by the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) or their combination, but not by their heat-inactivated forms. The data presented here prove that HAT is one of the in vivo target molecules of Cur; through inhibiting its activity, Cur induces histone hypoacetylation in vivo, where the ROS generation plays an important role. Considering the critical roles of histone acetylation in eukaryotic gene transcription and the involvement of histone hypoacetylation in the lose of cell viability caused by high concentrations of Cur, these results open a new door for us to further understand the molecular mechanism involved in the in vivo function of Cur.
The carcinogenicity of specific insoluble nickel compounds is mainly due to their intracellular generation of Ni2+ ion and its suppression on gene transcription, while the inhibition of Ni2+ on histone acetylation plays an important role in the suppression or silencing of genes. Recent studies on Ni2+ and histone H4 acetylation suggest that Ni2+ inhibits the acetylation of histone H4 through binding with its N-terminal histidine-18. It is well known that bound Ni2+ readily produces reactive oxygen species (ROS) in vivo, a critical factor inversely related with the occurrence of resistance of mammalian cells to Ni2+. Thus, we tried to find the possible role of ROS in the induction of Ni2+ on histone acetylation in the present study. We found that a high concentration of Ni2+ (no less than 600 microM) caused a significant decrease of histone acetylation in human hepatoma cells. This inhibition was shown to result mainly from the influence of Ni2+ on the overall histone acetyltransferase (HAT) activity indicated by the histone acetylation assay with the presence of a specific histone deacetylase (HDAC) inhibitor, trichostatin A (TSA). The in vitro HAT and HDAC assays further confirmed this result. At the same time, we found that the exposure of hepatoma cells to Ni2+ generated ROS. Coadministration of hydrogen peroxide with Ni2+ generated more ROS and more histone acetylation inhibition. Addition of the antioxidants 2-mercaptoethanol (2-ME) at 2 mM or N-acetyl-cysteine (NAC) at 1 mM, with Ni2+ together, completely suppressed ROS generation and significantly diminished the induced histone hypoacetylation. The data presented here prove that the ROS generation plays a role in the inhibition of histone acetylation, and, hence, the gene suppression and carcinogenesis caused by Ni2+ exposure, providing a new door for us to continuously understand the mechanism of ROS in the carcinogenicity of Ni2+ and the resistance of mammalian cells to Ni2+.
Our findings show that combining antioxidants and TSA can enhance their neoplastic toxicity at least in human leukemia HL-60 cells, providing a new approach to the design of chemotherapy strategies and the development of anticancer drugs.
Anti-lipopolysaccharide factor is a class of antimicrobial peptides with lipopolysaccharide-binding structural domains, which has a broad antimicrobial spectrum, high antimicrobial activities, and broad application prospects in terms of the aquaculture industry. However, the low yield of natural antimicrobial peptides and their poor expression activity in bacteria and yeast have hindered their exploration and utilization. Therefore, in this study, the extracellular expression system of Chlamydomonas reinhardtii, by fusing the target gene with the signal peptide, was used to express anti-lipopolysaccharide factor 3 (ALFPm3) from Penaeus monodon in order to obtain highly active ALFPm3. Transgenic C. reinhardtii T-JiA2, T-JiA3, T-JiA5, and T-JiA6, were verified using DNA-PCR, RT-PCR, and immunoblot. Additionally, the IBP1-ALFPm3 fusion protein could be detected not only within the cells but also in the culture supernatant. Moreover, the extracellular secretion containing ALFPm3 was collected from algal cultures, and then its bacterial inhibitory activity was analyzed. The results showed that the extracts from T-JiA3 had an inhibition rate of 97% against four common aquaculture pathogenic bacteria, including Vibrio harveyi, Vibrio anguillarum, Vibrio alginolyticus, and Vibrio parahaemolyticus. The highest inhibition rate of 116.18% was observed in the test against V. anguillarum. Finally, the minimum inhibition concentration (MIC) of the extracts from T-JiA3 to V. harveyi, V. anguillarum, V. alginolyticus, and V. parahaemolyticus were 0.11 μg/μL, 0.088 μg/μL, 0.11 μg/μL, and 0.011 μg/μL, respectively. This study supports the foundation of the expression of highly active anti-lipopolysaccharide factors using the extracellular expression system in C. reinhardtii, providing new ideas for the expression of highly active antimicrobial peptides.
Anti-lipopolysaccharide factor 3 (ALFPm3) possesses a wide antimicrobial spectrum and high antibacterial and viral activities for broad application prospects in the aquaculture industry. However, the application of ALFPm3 is limited by its low production in nature, as well as its low activity when expressed in Escherichia coli and yeast. Although it has been proven that its secretory expression can be used to produce antimicrobial peptides with strong antimicrobial activity, there is no study on the high-efficiency secretory expression of ALFPm3 in Chlamydomonas reinhardtii. In this study, signal peptides ARS1 and CAH1 were fused with ALFPm3 and inserted into the pESVH vector to construct pH-aALF and pH-cALF plasmids, respectively, that were transformed to C. reinhardtii JUV using the glass bead method. Subsequently, through antibiotic screening, DNA-PCR, and RT-PCR, transformants expressing ALFPm3 were confirmed and named T-JaA and T-JcA, respectively. The peptide ALFPm3 could be detected in algal cells and culture medium by immunoblot, meaning that ALFPm3 was successfully expressed in C. reinhardtii and secreted into the extracellular environment. Moreover, ALFPm3 extracts from the culture media of T-JaA and T-JcA showed significant inhibitory effects on the growth of V. harveyi, V. alginolyticus, V. anguillarum, and V. parahaemolyticus within 24 h. Interestingly, the inhibitory rate of c-ALFPm3 from T-JcA against four Vibrio was 2.77 to 6.23 times greater than that of a-ALFPm3 from T-JaA, indicating that the CAH1 signal peptide was more helpful in enhancing the secreted expression of the ALFPm3 peptide. Our results provided a new strategy for the secretory production of ALFPm3 with high antibacterial activity in C. reinhardtii, which could improve the application potentiality of ALFPm3 in the aquaculture industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.