Adenosine-5'-triphosphate (ATP) is a multifunctional nucleotide, which plays a vital role in many biological processes, including muscle contraction, cells functioning, synthesis and degradation of important cellular compounds, and membrane transport. Thus, the development of ATP-responsive controlled release system for bioorganism application is very significative. Here, an original and facile ATP-responsive controlled release system consisting of mesoporous silica nanoparticles (MSN) functionalized with an aptamer as cap has been designed. In this system, the ATP aptamer was first hybridized with arm single-stranded DNA1 (arm ssDNA1) and arm single-stranded DNA2 (arm ssDNA2) to form the sandwich-type DNA structure and then grafted onto the MSN surface through click chemistry approach, resulting in blockage of pores and inhibition of guest molecules release. In the presence of ATP, the ATP aptamer combined with ATP and got away from the pore, leaving the arm ssDNA1 and ssDNA2 on the surface of MSN. The guest molecules can be released because single-stranded DNA is flexible. The release of the guest molecules from this system then can be triggered by the addition of ATP. As a proof-of-principle, Ru(bipy)(3)(2+) was selected as the guest molecules, and the ATP-responsive loading and release of Ru(bipy)(3)(2+) have been investigated. The results demonstrate that the system had excellent loading efficiency (215.0 μmol g(-1) SiO(2)) and the dye release percentage can reach 83.2% after treatment with 20 mM ATP for 7 h. Moreover, the ATP-responsive behavior shows high selectivity with ATP analogues. However, the leakage of Ru(bipy)(3)(2+) molecule is neglectable if ATP was not added, indicating an excellent capping efficiency. Interestingly, this system can respond not only to the commercial ATP but also to the ATP extracted from living cells. By the way, this system is also relatively stable in mouse serum solution at 37 °C. This proof of concept might promote the application of ATP-responsive devices and can also provide an idea to design various target-responsive systems using other aptamers as cap.
A novel photon‐fueled gate‐like mesoporous silica nanoparticles (MSN)‐based delivery system is reported. In this system, the malachite green carbinol base (MGCB) is immobilized on the nanochannel wall of MSN as a light‐induced hydroxide ion emitter and i‐motif DNA is grafted on the surface of MSN as a cap. Photoirradiation with 365 nm wavelength UV light makes MGCB molecules dissociate into malachite green (MG) cations and OH− ions, which induce the i‐motif DNA to unfold into the single‐stranded form due to the increase of the pH in the solution. Therefore, the pores are uncapped and the entrapped guest molecules are released. After the light is turned off, the MG cations recombine with the OH− ions and return to the MGCB forms. The pH value thus decreases and the single‐stranded DNA switches back to i‐motif structure to cap the pore again. Because of the photon‐fueled MGCB‐dependent DNA conformation changes, the i‐motif DNA‐gated switch can be easily operated by turning the light on or off. Importantly, the opening/closing protocol is highly reversible and a partial cargo release can be easily achieved at will. This proof‐of‐concept may promote the application of DNA in the controlled release and can also provide a way to design various photon‐fueled controlled‐release systems using a combination of some photoirradiated pH‐jump systems and other kinds of pH‐sensitive linkers.
In this paper, a reversible light-responsive molecule-gated system based on mesoporous silica nanoparticles (MSN) functionalized with thymine derivatives is designed and demonstrated. The closing/opening protocol and release of the entrapped guest molecules is related by a photodimerization−cleavage cycle of thymine upon different irradiation. In the system, thymine derivatives with hydrophilicity and biocompatibility were grafted on the pore outlets of MSN. The irradiation with 365 nm wavelength UV light to thymine-functionalized MSN led to the formation of cyclobutane dimer in the pore outlet, subsequently resulting in blockage of pores and strongly inhibiting the diffusion of guest molecules from pores. With 240 nm wavelength UV light irradiation, the photocleavage of cyclobutane dimer opened the pore and allowed the release of the entrapped guest molecules. As a proof-of-the-concept, Ru(bipy) 3 2+ was selected as the guest molecule. Then the light-responsive loading and release of Ru(bipy) 3 2+ were investigated. The results indicated that the system had an excellent loading amount (53 μmol g −1 MSN) and controlled release behavior (82% release after irradiation for 24 h), and the light-responsive loading and release procedure exhibited a good reversibility. Besides, the light-responsive system loaded with Ru(bipy) 3 2+ molecule could also be used as a lightswitchable oxygen sensor.
Mercury (Hg(2+)) is a highly toxic and widespread environmental pollutant. Herein, a regenerable and highly selective core-shell structured magnetic mesoporous silica nanocomposite with functionalization of thymine (T) and T-rich DNA (denoted as Fe3O4@nSiO2@mSiO2-T-TRDNA nanocomposite) has been developed for simultaneous detection and removal of Hg(2+). In this work, the thymine and T-rich DNA were immobilized onto the interior and exterior surface of outermost mesoporous silica, respectively. The detection mechanism is based on Hg(2+)-mediated hairpin structure formed by T-rich DNA functionalized on the exterior surface of the nanocomposites, where, upon addition of SYBR Green I dye, strong fluorescence is observed. In the absence of Hg(2+), however, addition of the dye results in low fluorescence. The limit of detection for Hg(2+) in a buffer is 2 nM by fluorescence spectroscopy. Simultaneously, the Fe3O4@nSiO2@mSiO2-T-TRDNA nanocomposite features a selective binding with Hg(2+) between two thymines immobilized at the interior surface of the mesopores and exhibits efficient and convenient Hg(2+) removal by a magnet. Kinetic study reveals that the Hg(2+) removal is a rapid process with over 80% of Hg(2+) removed within approximately 1 h. The applicability of the developed nanocomposites is demonstrated to detect and remove Hg(2+) from samples of Xiangjiang river water spiked with Hg(2+). In addition, distinguishing aspects of the Fe3O4@nSiO2@mSiO2-T-TRDNA nanocomposites for Hg(2+) detection and removal also include the regeneration using a simple acid treatment and resistance to nuclease digestion. Similar process can be used to functionalize the Fe3O4@nSiO2@mSiO2 nanocomposites with other nucleic acids and small molecules for environmental and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.