BackgroundA huge focus is being placed on the development of novel signatures in the form of new combinatorial regimens to distinguish the neuroendocrine (NE) characteristics from castration resistant prostate cancer (CRPC) timely and accurately, as well as predict the disease-free survival (DFS) and progression-free survival (PFS) of prostate cancer (PCa) patients.MethodsSingle cell data of 4 normal samples, 3 CRPC samples and 3 CRPC-NE samples were obtained from GEO database, and CellChatDB was used for potential intercellular communication, Secondly, using the “limma” package (v3.52.0), we obtained the differential expressed genes between CRPC and CRPC-NE both in single-cell RNA seq and bulk RNA seq samples, and discovered 12 differential genes characterized by CRPC-NE. Then, on the one hand, the diagnosis model of CRPC-NE is developed by random forest algorithm and artificial neural network (ANN) through Cbioportal database; On the other hand, using the data in Cbioportal and GEO database, the DFS and PFS prognostic model of PCa was established and verified through univariate Cox analysis, least absolute shrinkage and selection operator (Lasso) regression and multivariate Cox regression in R software. Finally, somatic mutation and immune infiltration were also discussed.ResultsOur research shows that there exists specific intercellular communication in classified clusters. Secondly, a CRPC-NE diagnostic model of six genes (HMGN2, MLLT11, SOX4, PCSK1N, RGS16 and PTMA) has been established and verified, the area under the ROC curve (AUC) is as high as 0.952 (95% CI: 0.882−0.994). The mutation landscape shows that these six genes are rarely mutated in the CRPC and NEPC samples. In addition, NE-DFS signature (STMN1 and PCSK1N) and NE-PFS signature (STMN1, UBE2S and HMGN2) are good predictors of DFS and PFS in PCa patients and better than other clinical features. Lastly, the infiltration levels of plasma cells, T cells CD4 naive, Eosinophils and Monocytes were significantly different between the CRPC and NEPC groups.ConclusionsThis study revealed the heterogeneity between CRPC and CRPC-NE from different perspectives, and developed a reliable diagnostic model of CRPC-NE and robust prognostic models for PCa.
Introduction: COVID-19 (SARS-CoV-2) has been linked to organ damage in humans since its worldwide outbreak. It can also induce severe sperm damage, according to research conducted at numerous clinical institutions. However, the exact mechanism of damage is still unknown.Methods: In this study, testicular bulk-RNA-seq Data were downloaded from three COVID-19 patients and three uninfected controls from GEO to evaluate the effect of COVID-19 infection on spermatogenesis. Relative expression of each pathway and the correlation between genes or pathways were analyzed by bioinformatic methods.Results: By detecting the relative expression of each pathway and the correlation between genes or pathways, we found that COVID-19 could induce testicular cell senescence through MAPK signaling pathway. Cellular senescence was synergistic with MAPK pathway, which further affected the normal synthesis of cholesterol and androgen, inhibited the normal synthesis of lactate and pyruvate, and ultimately affected spermatogenesis. The medications targeting MAPK signaling pathway, especially MAPK1 and MAPK14, are expected to be effective therapeutic medications for reducing COVID-19 damage to spermatogenesis.Conclusion: These results give us a new understanding of how COVID-19 inhibits spermatogenesis and provide a possible solution to alleviate this damage.
BackgroundPro5state cancer is one of the most commonly diagnosed cancers in men worldwide and biochemical recurrence occurs in approximately 25% of patients after radical prostatectomy. Current decisions regarding biochemical recurrence after radical prostatectomy are largely dependent on clinicopathological parameters, which are less accurate. A growing body of research suggests that lipid metabolism influences tumor development and treatment, and that prostate cancer is not only a malignancy but also a lipid metabolism disease. Therefore, this study aimed to identify the prognostic value of lipid metabolism-related gene signaling disease to better predict biochemical recurrence and contribute to clinical decision-making.MethodsExpression data and corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA) database and the MSKCC database. Candidate modules closely associated with BCR were screened by univariate and LASSOcox regression analyses, and multivariate Cox regression analyses were performed to construct gene signatures. Kaplan-Meier (KM) survival analysis, time-dependent subject operating curves (ROC), independent prognostic analysis, and Nomogram were also used to assess the prognostic value of the signatures. In addition, Gene Ontology Analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore potential biological pathways.ResultsA 6-gene lipid metabolism-related gene signature was successfully constructed and validated to predict biochemical recurrence in prostate cancer patients. In addition, we identified the 6-gene signature as an independent risk factor. Functional analysis showed that lipid metabolism-related genes were closely associated with arachidonic acid metabolism, PPAR transduction signaling pathway, fatty acid metabolism, peroxisome, and glycerophospholipid metabolism. Prognostic models were associated with immune cell infiltration.ConclusionWe have successfully developed a novel lipid metabolism-related gene signature that is highly effective in predicting BCR in patients with limited prostate cancer after RP and created a prognostic Nomogram. Furthermore, the signature may help clinicians to select high-risk subpopulations, predict patient survival, and facilitate more personalized treatment than traditional clinical factors.
Immunotherapy has greatly improved the survival time and quality of life of patients with renal cell carcinoma, but the benefits are limited to a small portion of patients. There are too few new biomarkers that can be used to identify molecular subtypes of renal clear cell carcinoma and predict survival time with anti-PD-1 treatment. Single-cell RNA data of clear cell renal cell carcinoma (ccRCC) treated with anti-PD-1 were obtained from public databases, then 27,707 high-quality CD4 + T and CD8 + T cells were obtained for subsequent analysis. Firstly, genes set variation analysis and CellChat algorithm were used to explore potential molecular pathway differences and intercellular communication between the responder and non-responder groups. Additionally, differentially expressed genes (DEGs) between the responder and non-responder groups were obtained using the “edgeR” package, and ccRCC samples from TCGA-KIRC (n = 533) and ICGA-KIRC (n = 91) were analyzed by the unsupervised clustering algorithm to recognize molecular subtypes with different immune characteristics. Finally, using univariate Cox analysis, least absolute shrinkage and selection operator (Lasso) regression, and multivariate Cox regression, the prognosis model of immunotherapy was established and verified to predict the progression-free survival of ccRCC patients treated with anti-PD-1. At the single cell level, there are different signal pathways and cell communication between the immunotherapy responder and non-responder groups. In addition, our research also confirms that the expression level of PDCD1/PD-1 is not an effective marker for predicting the response to immune checkpoint inhibitors (ICIs). The new prognostic immune signature (PIS) enabled the classification of ccRCC patients with anti-PD-1 therapy into high- and low-risk groups, and the progression-free survival times (PFS) and immunotherapy responses were significantly different between these two groups. In the training group, the area under the ROC curve (AUC) for predicting 1-, 2- and 3-year progression-free survival was 0.940 (95% CI: 0.894–0.985), 0.981 (95% CI: 0.960–1.000), and 0.969 (95% CI: 0.937–1.000), respectively. Validation sets confirm the robustness of the signature. This study revealed the heterogeneity between the anti-PD-1 responder and non-responder groups from different angles and established a robust PIS to predict the progression-free survival of ccRCC patients receiving immune checkpoint inhibitors.
Purpose: Prostate cancer (PCa) has become the most frequently occurring cancer among western men, due to the rapid progression of tumor, late events will inevitably occur, which leads to poor prognosis of patients. Therefore, it is of great significance to explore the molecular mechanism of tumor progression.Methods: Herein, we conducted a transcriptomic analysis using public database to search for key genes that affect PCa progression. The correlation between gene expression and clinical pathological parameters and patient prognosis were examined, and it was verified in clinical samples. Next, we established cell lines by RNA interference, and studied its biological function by MTS, EdU, colony formation, wound-healing and transwell assay. The impact of gene on tumor growth was examined in nude mice xenograft model. Finally, high-throughput sequencing and signal pathway analysis were used to explore the molecular mechanism of gene action.Results: By combining clinical samples with public databases, we found that NETO2 expression was markedly elevated in tumors especially in metastatic tumors compared with normal tissues, and the expression level of NETO2 was closely associated with the clinical pathological parameters and prognosis of the patients. Functionally, NETO2 drove PCa cell proliferation, migration and invasion in vitro, and promoted growth of PCa cells in vivo. Moreover, through transcriptome high-throughput sequencing and experimental verification, our data demonstrate that NETO2 inhibits PCa cellular senescence via modulating p53-p21 pathway.Conclusions: Our results indicate that NETO2 plays an oncogenic role in PCa, which provides a new idea for clinical diagnosis and treatment of refractory PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.