Background: Proper thyroid hormone signaling via the TRα1 nuclear receptor is required for normal neurodevelopmental processes. The specific downstream mechanisms mediated by TRα1 that impact brain development remain to be investigated.
Methods: In this study, the structure, function, and transcriptome of hippocampal tissue in a mouse model expressing the first RTHα mutation discovered in a patient, THRAE403X, were analyzed. RNAscope was used to visualize the spatial and temporal expression of Thra1 mRNA in the hippocampus of wild-type mice, which corresponds to THRA1 mRNA in humans. The morphological structure was analyzed by Nissl staining, and the synaptic transmission was analyzed on the basis of long-term potentiation. The Morris water maze test and the zero maze test were used to evaluate the behavior. RNA-seq and quantitative real-time PCR were used to analyze the differentially expressed genes (DEGs) of the hippocampal tissues in the mouse model expressing the ThraE403X mutation.
Results: The juvenile mutant ThraE403X mice presented with delayed neuronal migration, disordered neuronal distribution, and decreased synaptic plasticity. A total of 754 DEGs, including 361 upregulated genes and 393 downregulated genes, were identified by RNA-seq. DEG-enriched Gene Ontology (GO) and KEGG pathways were associated with PI3K−Akt signaling, ECM−receptor interaction, neuroactive ligand−receptor interaction, and a range of immune-related pathways. 25 DEGs were validated by qPCR.
Conclusions: The ThraE403X mutation results in histological and functional abnormalities, as well as transcriptomic alterations in the juvenile mouse hippocampus. This study of the ThraE403X mutant offers new insights into the biological cause of RTHα-associated neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.