This paper conducts a thorough review of the literature on the feasibility and current state-of-the-art incorporation of basalt fiber (BF) into asphalt pavement materials, focusing on fiber characteristics, dosage, incorporation methods, mixture properties, and surface modification techniques. The optimum basalt fiber dosage should be determined based on engineering performance parameters such as asphalt type, fatigue cracking, thermal cracking, rutting, and moisture resistance of asphalt mixtures. Basalt fibers are added to asphalt mixes by dry method or mixed method to achieve better dispersion. Adding BF to asphalt mixtures increased performance characteristics like cracking resistance, rutting resistance, and fatigue resistance. Overall, incorporating BF into asphalt mixtures would lower costs while increasing pavement service life. More research is needed to fully understand the effects of different sizes of BF on pavement performance and the possible environmental and economic repercussions of fiber surface alteration.
This study proposes a stress analysis method of reinforced concrete (RC) box girder based on damage to reveal the dynamic mechanical response and damage mechanisms of a bridge under moving vehicle load. The effect of different vehicle mass, speed, concrete strength, and longitudinal reinforcement ratio on the stress of a single box girder is investigated using solid finite element vehicle–bridge interaction dynamic elastic–plastic analysis (a total of 13 kinds of loading schemes) that is based on the Newmark algorithms of a numerical analysis model of a five-axle vehicle and road roughness. The results reveal that the damage status of the RC box girder strongly depends on the vehicle mass and speed. The damage region of the box girder gradually increases, and changes from flexural damage to flexural-shear damage, which fails rapidly as the vehicle mass increases from 10 t to 60 t. With an increase in vehicle speed, the maximum vertical vibration displacement and the maximum longitudinal stress of the steel bar increase nonlinearly and the damage of the box girder first increases and then decreases. The most severe damage occurs at the vehicle speed of 25 m/s for all vehicle masses. As a result, limiting speed below 25 m/s under the vehicle mass (10 t to 60 t) and increasing concrete strength and reinforcement ratio in a certain range could reduce the damage status of a bridge effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.