Introduction The root of Tetrastigma hemsleyanum (RTH) has been widely used as a folk medicine in China. Meanwhile, its stems (STH) and leaves (LTH) are consumed as functional tea and food supplementation. Therefore, it is important to get a better understanding of the distribution of bioactive constituents in different parts of T. hemsleyanum. Objective To develop a method for quantitative analysis of multiple bioactive constituents and comparing their distribution in RTH, STH and LTH. Methods Ultra‐performance liquid chromatography triple quadrupole ion trap tandem mass spectrometry (UPLC‐QTRAP‐MS/MS) was used for the quantitative analysis. The quantitative data were further analysed by principal component analysis (PCA), hierarchical cluster analysis (HCA) and partial least squares determinant analysis (PLS‐DA). Results Forty‐two constituents in RTH, STH and LTH, including 14 flavonoids, three phenolic acids, 15 amino acids and 10 nucleosides, were quantitatively determined. The contents of flavonoids and phenolic acids in LTH were significantly higher than those in RTH and STH. While the contents of amino acids and nucleosides in LTH were less than those in RTH and STH. Multivariate statistical analysis can significantly classify and distinguish RTH, STH, and LTH. Conclusions The present method would be helpful for the quality control of T. hemsleyanum, and the results would be useful for the efficient utilisation of T. hemsleyanum in the future.
In this study Ginkgo biloba leaves (GBL) decoction and commercial capsules were digested using an in vitro model. Thirty-six active compounds were identified and quantified by HPLC-ESI-MS analysis based on the MS/MS patterns (precursor ions and product ions) and retention times, in comparison with reference standards. Most compounds in GBL showed a significant decrease during intestinal digestion, with an exception of vanillic acid and biflavonoids. Bioaccessibility values of chemical compositions varied between decoction and capsules samples. Also, significant reductions of total flavonoids and total phenolic content was observed after in vitro digestion. Both, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazo-line-6-sulfonic acid (ABTS) scavenging capacity decreased after gastric digestion, but increased during intestinal digestion. Nevertheless, different behaviour was observed in reducing antioxidant power (FRAP) assay. Compared to the pH of digestion, the influence of digestive enzymes on the chemical composition and antioxidant activity of GBL was relatively minor. Overall, these results may help provide a valid foundation for further investigations on bioactive compounds and the pharmacodynamics of GBL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.