Achieving CO2 reduction with H2O on metal photocatalysts and understanding the corresponding mechanisms at the molecular level are challenging. Herein, we report that quantum-sized Au nanoparticles can photocatalytically reduce CO2 to CO with the help of H2O by electron-hole pairs mainly originating from interband transitions. Notably, the Au photocatalyst shows a CO production rate of 4.73 mmol g−1 h−1 (~100% selectivity), ~2.5 times the rate during CO2 reduction with H2 under the same experimental conditions, under low-intensity irradiation at 420 nm. Theoretical and experimental studies reveal that the increased activity is induced by surface Au–O species formed from H2O decomposition, which synchronously optimizes the rate-determining steps in the CO2 reduction and H2O oxidation reactions, lowers the energy barriers for the *CO desorption and *OOH formation, and facilitates CO and O2 production. Our findings provide an in-depth mechanistic understanding for designing active metal photocatalysts for efficient CO2 reduction with H2O.
Current plasmonic photocatalysts are mainly based on noble metal nanoparticles and rarely work in the infrared (IR) light range. Herein, cost‐effective Bi2O3−x with oxygen vacancies was formed in situ on commercial bismuth powder by calcination at 453.15 K in atmosphere. Interestingly, defects introduced into Bi2O3−x simultaneously induced a localized surface plasmon resonance (LSPR) in the wavelength range of 600–1400 nm and enhanced the adsorption for CO2 molecules, which enabled efficient photocatalysis of CO2‐to‐CO (ca. 100 % selectivity) even under low‐intensity near‐IR light irradiation. Significantly, the apparent quantum yield for CO evolution at 940 nm reached 0.113 %, which is approximately 4 times that found at 450 nm. We also showed that the unique LSPR allows for the realization of a nearly linear dependence of photocatalytic CO production rate on light intensity and operating temperature. Finally, based on an IR spectroscopy study, an oxygen‐vacancy induced Mars‐van Krevlen mechanism was proposed to understand the CO2 reduction reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.