Lung morphogenesis is a well orchestrated, tightly regulated process through several molecular pathways, including TGF-β/bone morphogenetic protein (BMP) signaling. Alteration of these signaling pathways leads to lung malformation. We investigated the role of Follistatin-like 1 (Fstl1), a secreted follistatin-module–containing glycoprotein, in lung development. Deletion of Fstl1 in mice led to postnatal lethality as a result of respiratory failure. Analysis of the mutant phenotype showed that Fstl1 is essential for tracheal cartilage formation and alveolar maturation. Deletion of the Fstl1 gene resulted in malformed tracheal rings manifested as discontinued rings and reduced ring number. Fstl1 -deficient mice displayed septal hypercellularity and end-expiratory atelectasis, which were associated with impaired differentiation of distal alveolar epithelial cells and insufficient production of mature surfactant proteins. Mechanistically, Fstl1 interacted directly with BMP4, negatively regulated BMP4/Smad1/5/8 signaling, and inhibited BMP4-induced surfactant gene expression. Reducing BMP signaling activity by Noggin rescued pulmonary atelectasis of Fstl1 -deficient mice. Therefore, we provide in vivo and in vitro evidence to demonstrate that Fstl1 modulates lung development and alveolar maturation, in part, through BMP4 signaling.
Follistatin-like 1 (Fstl1) is induced in response to lung injury and promotes the accumulation of myofibroblasts and subsequent fibrosis via regulation of TGF-β and BMP. Reducing Fstl1 in mice reduces bleomycin-induced fibrosis in vivo, offering a potential therapeutic target for progressive lung fibrosis.
OBJECTIVE-Peripheral neuropathy associated with type 2 diabetes (DPN) is not widely modeled. We describe unique features of DPN in type 2 diabetic Zucker diabetic fatty (ZDF) rats.RESEARCH DESIGN AND METHODS-We evaluated the structural, electrophysiological, behavioral, and molecular features of DPN in ZDF rats and littermates over 4 months of hyperglycemia. The status of insulin signaling transduction molecules that might be interrupted in type 2 diabetes and selected survival-, stress-, and pain-related molecules was emphasized in dorsal root ganglia (DRG) sensory neurons.RESULTS-ZDF rats developed slowing of motor sciatic-tibial and sensory sciatic digital conduction velocity and selective mechanical allodynia with preserved thermal algesia. Diabetic sural axons, preserved in number, developed atrophy, but there was loss of large-calibre dermal and small-calibre epidermal axons. In diabetic rats, insulin signal transduction pathways in lumbar DRGs were preserved or had trends toward upregulation: mRNA levels of insulin receptor -subunit (IR), insulin receptor substrate (IRS)-1, and IRS-2. The numbers of neurons expressing IR protein were also preserved. There were trends toward early rises of mRNA levels of heat shock protein 27 (HSP27), the ␣2␦1 calcium channel subunit, and phosphatidylinositol 3-kinase in diabetes. Others were unchanged, including nuclear factor-B (NF-B; p50/p105) and receptor for advanced glycosylation endproducts (RAGE) as was the proportion of neurons expressing HSP27, NF-B, and RAGE protein.CONCLUSIONS-ZDF type 2 diabetic rats develop a distal degenerative sensory neuropathy accompanied by a selective long-term pain syndrome. Neuronal insulin signal transduction molecules are preserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.