Physical systems in the time domain may exhibit analogous phenomena in real space, such as time crystals, time-domain Fresnel lenses, and modulational interference in a qubit. Here we report the experimental realization of time-domain grating using a superconducting qutrit in periodically modulated probe and control fields via two schemes: Simultaneous modulation and complementary modulation. Both experimental and numerical results exhibit modulated Autler-Townes (AT) and modulation-induced diffraction (MID) effects. Theoretical results also confirm that the peak positions of the interference fringes of AT and MID effects are determined by the usual two-level relative phases, while the observed diffraction fringes, appearing only in the complementary modulation, are however related to the three-level relative phase. Further analysis indicates that such a single-atom time-domain diffraction originates from the correlation effect between the two time-domain gratings. Moreover, we find that the widths of the diffraction fringes are independent of the control-field power. Our results shed light on the experimental exploration of quantum coherence for modulated multilevel systems and may find promising applications in fast all-microwave switches and quantum-gate operations in the strong-driving regime.I.
Floquet theory combined with the generalized Van Vleck nearly degenerate perturbation theory, has been widely employed for studying various two-level systems that are driven by external fields via the time-dependent longitudinal (i.e., diagonal) couplings. However, three-level systems strongly driven by the time-dependent transverse (i.e., off-diagonal) couplings have rarely been investigated, due to the breakdown of the traditional rotating wave approximation. Meanwhile, the conventional perturbation theory is not directly applicable, since a small parameter for the perturbed part is no longer apparent. Here we develop a double-unitary-transformation approach to deal with the periodically modulated and strongly driven systems, where the time-dependent Hamiltonian has large off-diagonal elements. The first unitary transformation converts the strong off-diagonal elements to the diagonal ones, and the second enables us to harness the generalized Van Vleck perturbation theory to deal with the transformed Floquet matrix and also allows us to reduce the infinite-dimensional Floquet Hamiltonian to a finite effective one. For a strongly modulated three-level system, with the combination of the Floquet theory and the transformed generalized Van Vleck perturbation theory, we obtain analytical results of the system, which agree well with exact numerical solutions. This method offers a useful tool to analytically study the multi-level systems with strong transverse couplings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.