Urolithin A (UroA) is one of the primary intestinal metabolites of ellagitannins, showing translational potential as a nutritional intervention in humans. Mounting evidence suggests that fructose consumption contributes to the progression of chronic kidney disease (CKD) that manifests in hyperuricemic nephropathy, renal inflammation, and tubulointerstitial injury. Here, we investigated the efficacy of UroA in alleviating fructose-induced hyperuricemic nephropathy in mice. Uric acid-exposed human kidney-2 (HK-2) cells were utilized for in vitro mechanism validation. Histopathological staining, immunoblotting, and transmission electron microscope were performed for the mechanistic investigations. Our results revealed that UroA ameliorated fructose-induced hyperuricemic nephropathy in mice. The histopathologic assessment showed that UroA attenuated tubular hypertrophy and dilation, glomerular basement membrane thickening, and collagen deposition in the kidney of fructose-fed mice. Mechanistically, UroA treatment impaired STING-NLRP3 activation, resulting in reduced production of proinflammatory cytokines IL-1β, IL-6, and TNF-α. Notably, UroA exhibited a scavenging effect against reactive oxygen species (ROS) and restored fructose-impaired PINK1/Parkin-mediated mitophagy in nephropathic mice. Furthermore, the inhibitory effect of UroA in STING-NLRP3 activation was impaired after Parkin gene silencing in HK-2 cells. Together, this study suggests that UroA alleviates fructose-induced hyperuricemic nephropathy by promoting Parkin-dependent mitophagy, thereby suppressing STING-NLRP3 axis-mediated inflammatory response. Thus, dietary supplementation with UroA or ellagitannins-rich foods may serve as a promising intervention to prevent CKD progression.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Excessive fructose consumption exacerbates the progression of nonalcoholic fatty liver disease (NAFLD) by disrupting hepatic lipid homeostasis. This study sought to evaluate the efficacy of urolithin A (UroA) in a fructose-induced NAFLD mouse model. UroA was administered in the high-fructose-fed mice to investigate the antisteatotic effects in vivo. Fructosestimulated HepG2 cells and primary hepatocytes were established for in vitro mechanistic assessment. The results suggested that UroA ameliorated fructose-induced hepatic steatosis in mice. Mechanistically, UroA impaired lipogenesis and enhanced β-oxidation in the livers of fructose-fed mice. Notably, UroA facilitated hepatic lipophagy through the AMPK/ULK1 pathway both in vivo and in vitro, degrading lipid droplets for fueling β-oxidation. This study indicates that UroA alleviates excessive lipid accumulation and restores lipid homeostasis in the livers of fructose-fed mice by suppressing lipid metabolic reprogramming and triggering lipophagy. Therefore, dietary supplementation of UroA or ellagitannins-rich foods may be beneficial for NAFLD individuals with high fructose intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.