Since landslide detection using the combination of AIRSAR data and GIS-based susceptibility mapping has been rarely conducted in tropical environments, the aim of this study is to compare and validate support vector machine (SVM) and index of entropy (IOE) methods for landslide susceptibility assessment in Cameron Highlands area, Malaysia. For this purpose, ten conditioning factors and observed landslides were detected by AIRSAR data, WorldView-1 and SPOT 5 satellite images. A spatial database was generated including a total of 92 landslide locations encompassing the same number of observed and detected landslides, which was divided into training (80%; 74 landslide locations) and validation (20%; 18 landslide locations) datasets. Results of the difference between observed and detected landslides using root mean square error (RMSE) indicated that only 16.3% error exists, which is fairly acceptable. The validation process was performed using statistical-based measures and the area under the receiver operating characteristic (AUROC) curves. Results of validation process indicated that the SVM model has the highest values of sensitivity (88.9%), specificity (77.8%), accuracy (83.3%), Kappa (0.663) and AUROC (84.5%), followed by the IOE model. Overall, the SVM model applied to detected landslides is considered to be a promising technique that could be tested and utilized for landslide susceptibility assessment in tropical environments.
A landslide susceptibility map, which describes the quantitative relationship between known landslides and control factors, is essential to link the theoretical prediction with practical disaster reduction measures. In this work, the artificial neural network (ANN) model, a promising tool for mapping landslide susceptibility, was adopted to evaluate the coseismic landslide susceptibility affected by the 2013 Minxian, Gansu, China, Mw5.9 earthquake. The evaluation was based on the landslide inventory of this event containing 6479 landslides, and the terrain, geological and seismic factors from database available. During the analyses, two ANN models were applied: considering the entire factors aforementioned (CS model) and excluding seismic factors above (ES model). The success and predictive rates of ANN models and the cumulative percentage curves of susceptibility maps obtained from the models all indicate that the CS model has a relatively better performance than the ES model. However, the comparison of overlapping susceptibility areas suggests that 52.8% of the very high susceptibility areas derived from the CS model coincide with the ES model; and for the very low susceptibility areas, this proportion is 73.55%. Thus, it can be concluded that the assessment based on existing earthquake-induced landslides and the ES model could provide better background information for seismic landslide susceptibility mapping and disaster prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.