YY1 is a mammalian zinc-finger transcription factor with unusual structural and functional features. It has been implicated as a positive and a negative regulatory factor that binds to the CCATNTT consensus DNA element located in promoters of many cellular and viral genes. A mammalian cDNA that encodes a YY1-binding protein and possesses sequence homology with the yeast transcriptional factor RPD3 has been identified. A Gal4 DNA binding domain-mammalian RPD3 fusion protein strongly represses transcription from a promoter containing Gal4 binding sites. Association between YY1 and mammalian RPD3 requires a glycine-rich region on YY1. Mutations in this region abolish the interaction with mammalian RPD3 and eliminate transcriptional repression by YY1. These data suggest that YY1 negatively regulates transcription by tethering RPD3 to DNA as a cofactor and that this transcriptional mechanism is highly conserved from yeast to human.
The retina is a widely profiled tissue in multiple species by single-cell RNA sequencing studies. However, integrative research of the retina across species is lacking. Here, we construct the first single-cell atlas of the human and porcine ocular compartments and study inter-species differences in the retina. In addition to that, we identify putative adult stem cells present in the iris tissue. We also create a disease map of genes involved in eye disorders across compartments of the eye. Furthermore, we probe the regulons of different cell populations, which include transcription factors and receptor-ligand interactions and reveal unique directional signalling between ocular cell types. In addition, we study conservation of regulons across vertebrates and zebrafish to identify common core factors. Here, we show perturbation of KLF7 gene expression during retinal ganglion cells differentiation and conclude that it plays a significant role in the maturation of retinal ganglion cells.
ELRs mark cell identities ELRs show high tissue-and cell-type-specificity compared to PLRs, as PLRs have very similar presence/absence profiles across samples Enhancer-like transposable elements Genome Research 41
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.