BackgroundRight-to-left shunt (RLS) is associated with several conditions and causes morbidity. In this study, we aimed to evaluate the effectiveness of synchronous multimode ultrasonography in detecting RLS.MethodsWe prospectively enrolled 423 patients with high clinical suspicion of RLS and divided them into the contrast transcranial Doppler (cTCD) group and synchronous multimode ultrasound group, in which both cTCD and contrast transthoracic echocardiography (cTTE) were performed during the same process of contrast-enhanced ultrasound imaging. The simultaneous test results were compared with those of cTCD alone.ResultsThe positive rates of grade II (22.0%:10.0%) and III (12.7%:10.8%) shunts and the total positive rate (82.1748%) in the synchronous multimode ultrasound group were higher than those in the cTCD alone group. Among patients with RLS grade I in the synchronous multimode ultrasound group, 23 had RLS grade I in cTCD but grade 0 in synchronous cTTE, whereas four had grade I in cTCD but grade 0 in synchronous cTTE. Among patients with RLS grade II in the synchronous multimode ultrasound group, 28 had RLS grade I in cTCD but grade II in synchronous cTTE. Among patients with RLS grade III in the synchronous multimode ultrasound group, four had RLS grade I in cTCD but grade III in synchronous cTTE. Synchronous multimode ultrasound had a sensitivity of 87.5% and specificity of 60.6% in the patent foramen ovale (PFO) diagnosis. Binary logistic regression analyses showed that age (odds ratio [OR] = 1.041) and risk of paradoxical embolism score ≥ 7 (OR = 7.798) were risk factors for stroke recurrence, whereas antiplatelets (OR = 0.590) and PFO closure with antiplatelets (OR = 0.109) were protective factors.ConclusionSynchronous multimodal ultrasound significantly improves the detection rate and test efficiency, quantifies RLS more accurately, and reduces testing risks and medical costs. We conclude that synchronous multimodal ultrasound has significant potential for clinical applications.
Listeria monocytogenes has been shown to exhibit antitumor effects. However, the mechanism remains unclear. Autophagy is a cellular catabolic process that mediates the degradation of unfolded proteins and damaged organelles in the cytosol, which is a double-edged sword in tumorigenesis and treatment outcome. Tumor cells display lower levels of basal autophagic activity than normal cells. This study examined the role and molecular mechanism of autophagy in the antitumor effects induced by LM, as well as the combined antitumor effect of LM and the autophagy inhibitor chloroquine (CQ). We investigated LM-induced autophagy in B16F10 melanoma cells by real-time PCR, immunofluorescence, Western blotting, and transmission electron microscopy and found that autophagic markers were increased following the infection of tumor cells with LM. The autophagy pathway in B16F10 cells was blocked with the pharmacological autophagy inhibitor chloroquine, which led to a significant increase in intracellular bacterial multiplication in tumor cells. The combination of CQ and LM enhanced LM-mediated cancer cell death and apoptosis compared with LM infection alone. Furthermore, the combination of LM and CQ significantly inhibited tumor growth and prolonged the survival time of mice in vivo, which was associated with the increased colonization and accumulation of LM and induced more cell apoptosis in primary tumors. The data indicated that the inhibition of autophagy by CQ enhanced LM-mediated antitumor activity in vitro and in vivo and provided a novel strategy to improving the anticancer efficacy of bacterial treatment.
We analyzed the effects of Glycyrrhiza polysaccharide(GCP) on growth performance, appetite, and hypothalamic inflammation related indexes in broilers. One-day-old male AA broilers were randomly divided into four groups: Control, L-GCP, M-GCP, and H-GCP (0, 300, 600, and 900 mg GCP/kg feed), with six repetition cages for each treatment and twelve broilers in each repeat for a period of 42 days. From day 1 to day 21, the addition of GCP to the diet significantly improved the ADFI and the ADG of broilers, and the mRNA levels of NPY and AgRP were significantly increased while POMC and CART were decreased in the hypothalamus of broilers; GCP also significantly decreased the mRNA levels of IL-1β, IL-6, TNF-α, TLR-4, MyD88 and NF-κB, and increased the IL-4 and IL-10 in the hypothalamus from day 1 to day 42. The concentrations of appetite-related factors and inflammatory factors in serum were changed in the same fashion. Supplementation with 600 mg/kg GCP had the optimal effect in broilers, and GCP has the potential to be used as a feed additive in the poultry production industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.