Forward osmosis (FO) is an evolving membrane separation technology for water treatment and reclamation. However, FO water treatment technology is limited by factors such as concentration polarization, membrane fouling, and reverse solute flux. Therefore, it is of a great importance to prepare an efficient high-density porous membrane and to select an appropriate draw solute to reduce concentration polarization, membrane fouling, and reverse solute flux. This review aims to present a thorough evaluation of the advancement of different draw solutes and membranes with their effects on FO performance. NaCl is still widely used in a large number of studies, and several general draw solutes, such as organic-based and inorganic-based, are selected based on their osmotic pressure and water solubility. The selection criteria for reusable solutes, such as heat-recovered gaseous draw, magnetic field-recovered MNPs, and electrically or thermally-responsive hydrogel are primarily based on their industrial efficiency and energy requirements. CA membranes are resistant to chlorine degradation and are hydrophilic, while TFC/TFN exhibit a high inhibition of bio-adhesion and hydrolysis. AQPs are emerging membranes, due to proteins with complete retention capacity. Moreover, the development of the hybrid system combining FO with other energy or water treatment technologies is crucial to the sustainability of FO.
Zinc ferrite is a type of photocatalytic material with high physicochemical stability, narrow band gap, high carrier separation efficiency, high porosity, and paramagnetism, which makes it easy to recover. Thus, zinc ferrite is widely used as a photocatalyst in water treatment. In this paper, the preparation principles as well as the advantages and disadvantages of typical methods used to prepare zinc ferrite including hydrothermal, co-precipitation, sol-gel, and other novel methods such as biosynthesis have been summarized. Modification methods such as elemental doping, composite formation, and morphological modification have been highlighted. Using these modification methods, the catalytic activity of zinc ferrite toward the photocatalytic degradation of organic pollutants in water has been enhanced. Biosynthesis is regarded as a promising preparation method that uses biological materials instead of chemical materials to achieve the large-scale preparation of zinc ferrite using low cost, energy efficient, and environmentally friendly processes. Meanwhile, the combination of multiple modification techniques to enhance the photocatalytic performance of zinc ferrite will be an important research trend in the future.
Discharging large amounts of domestic and industrial wastewater drastically increases the reactive nitrogen content in aquatic ecosystems, which causes severe ecological stress and biodiversity loss. This paper reviews three common types of denitrification processes, including physical, chemical, and biological processes, and mainly focuses on the membrane technology for nitrogen recovery. The applicable conditions and effects of various treatment methods, as well as the advantages, disadvantages, and influencing factors of membrane technologies, are summarized. Finally, it is proposed that developing effective combinations of different treatment methods and researching new processes with high efficiency, economy, and energy savings, such as microbial fuel cells and anaerobic osmotic membrane bioreactors, are the research and development directions of wastewater treatment processes.
The direct or indirect discharge of organic pollutants causes serious environmental problems and endangers human health. The high electron–hole recombination rate greatly limits the catalytic efficiency of traditional TiO2-based catalysts. Therefore, starting from low-cost activated carbon (AC), a photocatalyst (F-Si-TiO2/AC) comprising fluorine (F)- and silicon (Si)-doped TiO2 loaded on AC has been developed. F-Si-TiO2/AC has a porous structure. TiO2 nanoparticles were uniformly fixed on the surface or pores of AC, producing many catalytic sites. The band gap of F-Si-TiO2/AC is only 2.7 eV. In addition, F-Si-TiO2/AC exhibits an excellent adsorption capacity toward methyl orange (MO) (57%) in the dark after 60 min. Under the optimal preparation conditions, F-Si-TiO2/AC showed a significant photodegradation performance toward MO, reaching 97.7% after irradiation with visible light for 70 min. Even under the action of different anions and cations, its degradation efficiency is the lowest, at 64.0%, which has good prospects for practical application. At the same time, F-Si-TiO2/AC has long-term, stable, practical application potential and can be easily recovered from the solution. Therefore, this work provides new insights for the fabrication of low-cost, porous, activated, carbon-based photocatalysts, which can be used as high-performance photocatalysts for the degradation of organic pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.