This research enhanced two major processes of the previous work of the off-line Thai handwritten character recognition using hybrid techniques of heuristic rules and neural network system. The proposed functions are mainly in 1) Feature extraction enhancement to improve the feature conflict resolution rule and the specialized neural network-based zigzag feature extraction. These functions are used to refine the conflict features and zigzag patterns; 2) Neural network-based recognition. Specifically, a neural network technique improves the capabilities of the recognition process to handle various styles of writing. The result showed that the additional feature conflict resolution rule could achieve the feature extraction rate of 87.85% (increased 2.13%), the feature extraction rate of the specialized neural network-based zigzag extraction could achieve 90.48% (increased 47.9%) and the recognition rate of the neural network-based recognition which combine both of the two proposed feature extraction functions could achieve 92.78% (increased 9.77%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.