This paper documents stylized facts on the process of structural transformation around the world and empirically analyzes its determinants using data on real value added by sector of economic activity (agriculture, manufacturing and services) for a panel of 168 countries over the period 1970-2010. The analysis points to large differences in sector shares both across and within regions as well as for countries at similar levels of economic development. Using both linear and quantile regression methods, it finds that a large proportion of the crosscountry variation in sector shares can be accounted for by country characteristics, such as real GDP per capita, demographic structure, and population size. It also finds that policy and insitutional variables, such as product market reforms, openness to trade, human and physical capital, and finance improve the baseline model's ability to account for the variation in sectoral shares across countries. JEL Classification Numbers: O14, O24, O40
The complexity change of brain activity in Alzheimer's disease (AD) is an interesting topic for clinical purpose. To investigate the dynamical complexity of brain activity in AD, a multivariate multi-scale weighted permutation entropy (MMSWPE) method is proposed to measure the complexity of electroencephalograph (EEG) obtained in AD patients. MMSWPE combines the weighted permutation entropy and the multivariate multi-scale method. It is able to quantify not only the characteristics of different brain regions and multiple time scales but also the amplitude information contained in the multichannel EEG signals simultaneously. The effectiveness of the proposed method is verified by both the simulated chaotic signals and EEG recordings of AD patients. The simulation results from the Lorenz system indicate that MMSWPE has the ability to distinguish the multivariate signals with different complexity. In addition, the EEG analysis results show that in contrast with the normal group, the significantly decreased complexity of AD patients is distributed in the temporal and occipitoparietal regions for the theta and the alpha bands, and also distributed from the right frontal to the left occipitoparietal region for the theta, the alpha and the beta bands at each time scale, which may be attributed to the brain dysfunction. Therefore, it suggests that the MMSWPE method may be a promising method to reveal dynamic changes in AD.
A solvent‐vapor transport route produces centimeter‐sized single‐crystal red phosphors. The epitaxial growth route to yield its core–shell structure at ambient temperature was adopted. These red phosphors could be applied in all‐inorganic WLED devices. Cs2TiF6:Mn4+ (CTFM) single crystal provides enhancement of quantum efficiency, moisture resistance, and thermal stability compared to polycrystalline powders. The internal quantum efficiency can reach as high as 98.7 %. To further improve waterproof stability, the Cs2TiF6 (CTF) shell with tunable thickness has been epitaxially grown on the CTFM single crystal surface and a unique three‐step photoluminescence intensity evolution mechanism has been proposed. By combining as‐prepared CTFM@CTF core–shell structured single crystal, YAG:Ce single crystal and blue‐chip, warm WLEDs with excellent color rendition (Ra=90, R9=94), low correlated color temperature (CCT=3155 K), and high luminous efficacy were fabricated without any organic resins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.