poisoned by the edible fungus accident occurred frequently in recent years since that there were no effectively and quickly recognition methods for the wild fungus. To tackle the problem, a wild fungus classification algorithm based on a deep convolutional neural network(CNN), Residual Network(ResNet), is proposed in this paper. And then, an optimization method is proposed for network training. In order to verify the effectiveness of the model and optimization method, a wild fungus database, in total of 1280 images, is used in this paper. The experimental results show that the proposed algorithm can effectively complete the classification task of wild mushrooms, and the optimization algorithm proposed in this paper can also effectively improve the classification effect of the algorithm model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.