Intelligent transportation is an important component of future smart cities, and electric autonomous vehicles (EAVs) are envisioned to be the main form of transportation because EAVs can save energy, protect the environment, and improve service efficiency. With limited vehicle-specific energy storage capacity and overall constraint in the smart grid's electric load, we propose a novel intelligent management scheme to jointly schedule the travel and charging activities of the EAV fleet in one geographical area. This scheme not only schedules EAVs to meet the passengers' requests but also explores the matching problem between the energy requirement of EAVs and the deployment of charging piles in smart cities. We minimize the total cruise energy consumption of EAVs under the condition of limited energy supply while guaranteeing the quality-of-service (QoS). Network Calculus (NC) is extended to model the electric traffic flow in this paper. With the real-world electric taxi data in Beijing, simulation results demonstrate that the proposed scheme can achieve substantial energy reduction and remarkable improvements in both the order completion rate and utilization rate of the charging stations.
A proactive mobile network (PMN) is a novel architecture enabling extremely low-latency communication. This architecture employs an open-loop transmission mode that prohibits all real-time control feedback processes and employs virtual cell technology to allocate resources non-exclusively to users. However, such a design also results in significant potential user interference and worsens the communication’s reliability. In this paper, we propose introducing multi-reconfigurable intelligent surface (RIS) technology into the downlink process of the PMN to increase the network’s capacity against interference. Since the PMN environment is complex and time varying and accurate channel state information cannot be acquired in real time, it is challenging to manage RISs to service the PMN effectively. We begin by formulating an optimization problem for RIS phase shifts and reflection coefficients. Furthermore, motivated by recent developments in deep reinforcement learning (DRL), we propose an asynchronous advantage actor–critic (A3C)-based method for solving the problem by appropriately designing the action space, state space, and reward function. Simulation results indicate that deploying RISs within a region can significantly facilitate interference suppression. The proposed A3C-based scheme can achieve a higher capacity than baseline schemes and approach the upper limit as the number of RISs increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.